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Neural Correlates of bow learning technique 

Angel Blanco1 and Rafael Ramírez1 

1 Music and Machine Learning Lab, Universitat Pompeu Fabra, Barcelona 
lncs@springer.com 

Abstract. In this work we want to study the process of learning a musical in-
strument through the use of audio descriptors and EEG. Twelve subjects parti-
cipated in our experiment. Subjects were divided into two groups: a group of 
people who has never played the violin before  (six subjects) and a group of 
experts (more than six years playing the violin). Participants were asked to 
perform a violin exercise during eighteen trials while the corresponding audio 
to each trial was recorded together with their EEG activity. Beginners showed 
significant differences between the beginning of the session and the end cor-
responding to an improve in the quality of the sound recorded while experts 
maintained their results. On the other hand, beginners showed more power in 
the High Beta frequency band (21-35Hz) than experts although the power val-
ues decreased during the session correlated with an improvement in the scores 
of the exercise.  

Keywords: EEG, Learning, Music. 

1 Introduction 

Previous research has investigated the presence of biomarkers during human sensori-
motor learning using EEG. For instance, it has been observed that linear and bilateral 
EEG alpha, as well as high theta increases in power, correlated with enhanced kine-
matics in participants during the performance of a visuomotor task which required 
learning and adaptation, while the control group did not show variations in kinematic 
and electrophysiological parameters [1]. 

The aim of this work is to find EEG biomarkers associated to different cognitive 
states during the process of learning a musical instrument, taking the violin as a case 
study. For that purpose we have used audio descriptors to track the quality of the 
sound generated by beginners during their learning process and at the same time we 
record their EEG activity. We also recruited a group of experts violinists (experience 
> 3 years) to compare both results. 
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2 Materials & Methods 

2.1 Participants 

Twelve adults participated in the study. Participants granted their written consent and 
procedures were positively evaluated by the CIREP, Barcelona, Spain, under the ref-
erence number X. Participants were asked to fill a form with questions regarding their 
level of musical studies and their primary instruments. Only participants who had 
never played the violin will conform  the beginners group (BG), while participants 
with a high-level profile in violin playing conformed the expert group (EG). Partici-
pants were recruited in person at the university campus. Before starting, participants 
received a written consent form and were informed about their task, the experimental 
procedures and their right to withdraw from the experiment at any moment. To pro-
ceed with the study each participant must have agreed to participate and signed the 
corresponding consent form. 
2.2 Materials 

The Emotiv EPOC EEG system [2] was used for acquiring the EEG data. It consists 
of 16 wet saline electrodes, providing 14 EEG channels, and a wireless amplifier. The 
electrodes were located at the positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F4, F8, AF4 according to the international 10–20 system. The data were digi-
tized using the embedded 16-bit ADC with 128 Hz sampling frequency per channel 
and sent to the computer via Bluetooth. The impedance of the electrode contact to the 
scalp was visually monitored using Emotiv Control Panel software. We collected the 
data using the OpenViBE platform [3]. The data was processed in EEGLAB [10] 
under the Matlab environment [4]. 

The sound of each violin trial was recorded using a Zoom recorder [5] and proc-
essed later in Matlab using the yin algorithm [6], which is a commonly used pitch 
detection algorithm based upon autocorrelation, to extract audio features in order to 
assess the quality of the audio produced by the subjects. 

 
2.3 Method 

Participants will be divided in two different groups: six total beginners in violin play-
ing and six experts. First, participants filled a questionnaire with questions related to 
their musical ability. Then, participants belonging to the beginner group were shown a 
ten minutes instructional video on stance and violin position found in the web (refer-
ence web), and were asked to play eighteen trials consisting of four up and down 
bowing movements (playing the A open string), making clear to the participants that 
their main objective was achieving a stable tone and dynamics. Participants also 
watched a video reference of an expert executing the same exercise. Then, partici-
pants were asked to initiate a trial and to start producing sound with the instrument 
after the indication of the experimenter. Participants were free to take as many breaks 
as they wanted through the experiment although, every five trials participants had the 
opportunity to review as many times as they wanted the reference expert video.  
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EEG power computation. Before starting, participants imitated the movement and 
gestures of the exercise, holding the violin and moving their right arm without using a 
the bow and therefore without generating any kind of sound. The EEG activity was 
recorded from each one of these three trials in order to be used as a baseline reference 
to compute later the ERD/ERS for each real trial.  

For each subject and each single-trial, the power spectral density (PSD) is com-
puted from each electrode using Welch's overlapped segment averaging estimator. 
The power of eleven frequency bands were extracted corresponding to Delta (1-4Hz), 
Theta(4-8Hz), Alpha(8-13Hz), Beta(13-24Hz) and Gamma(30-50Hz), and the low 
Theta(4-5Hz), Alpha(8-10Hz), Beta(14-20Hz) and the high Theta(6-8Hz), Alpha(11-
13Hz), Beta(21-35Hz) components of the bands. Each power value was standardized 
using the ERD/ERS equation (1). We also computed, as extra descriptors, the average 
power values of the right (AF4,F4,F8,FC6) and left (AF3,F3,F7,FC5) frontal lobes 
together with the average values of both frontal hemispheres and another one with the 
average value of all the electrodes for each band.  

  

 ERD/ERS(%)=
������	� �	
����� ��	
 ������
��
 �	
����� ��	
 �����

������	� �	
����� ��	
 �����
∗ 100 (1) 

 
Extraction of audio features. Generated violin sound was recorded for each trial and 
processed independently. First, we extracted sound descriptors from the audio signal 
of each trial using the Yin algorithm implementation in Matlab [7]. This Matlab im-
plementation first windows the signal, using a windows size which depends in the 
sample rate and the minimum frequency (30Hz by default), and for each windows it 
computes three different parameters which are: the fundamental frequency in octaves 
(reference: 440), the aperiodicity measure (the ratio of aperiodic to total power), and 
the period-smoothed instantaneous power. With those parameters we can compute 
sound descriptors as Dynamic Stability or Pitch Stability which can be used to assess 
the quality of an instrument sound as reported by Romani et al [8]. Finally, The in-
verse values of Dynamic Stability and Pitch Stability together with Aperiodicity were 
normalized by subtracting the mean. The average value of the three descriptors for 
each trial conforms a unique descriptor called Sound Instability.  

3 Results 

3.1 Audio Analysis 

The results of Sound Quality along trials of the beginners compared with experts can 
be seen in Figure 1. The number of trials were divided into three time periods and 
averged: Early (between trial one and six), Middle (between trial six and twelve) and 
Late (between trial thirteen and eighteen). One-way Anova for the three time periods 
was performed for each group in order to see differences between means reflecting 
the average learning process of the participants. Significant differences were obtained 
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for the beginner group (p<0.25, p=0.00003) but not for the expert group (p<0.25, 
p=8.844).  

 

Fig.1. Box plot with the Sound Instability scores of each subject for each trial. We can see the 
scores of the beginner group in blue colour and the scores of the Expert group in red.  

3.2 EEG Analysis 

EEG data was first analyzed to see differences between beginners and experts using 
Information Gain feature selection in Weka [9] for all and each one of the three peri-
ods of time. Thirty five features over one hundred ninety eight were  chosen by the 
ranker method. These features included: Gamma, Beta (Low and High), Alpha and 
High Theta in the frontal cortex, both parietal and temporal hemispheres, and in the 
right occipital hemisphere.  

Seven machine learning algorithms were evaluated using a meta classifier comput-
ing the result first, for the best feature selected and later for the best feature selected 
plus the second one until ten. This method will allow us to see when the results stop 
increasing thus avoiding overfitting. The learning algorithms chosen were: J48, 
SMO(c=1.0), SMO(c=2.0), IBk(k=1), IBk(k=3), IBk(k=5) and Multilayer Perceptron. 
The results were obtained using a ten fold cross-validation. 

Best results during the three periods were achieved by IBk(k=1) with a classifica-
tion accuracy of 87.09% in the early period using five features before the results stabi-
lized: High Beta in both frontal lobes and Gamma in the right parietal and occipital 
lobe. A classification accuracy of 94.84% in the middle period using also a number of 
five features: Gamma in left temporal lobe, the average Alpha value of all the elec-
trodes, and High Beta and Alpha in both frontal lobes. And finally, a classification 
accuracy of 94.38% in the late period using the following five features: High Alpha in 
both frontal lobes, Gamma in left temporal lobe, High Beta in both frontal lobes and 
Low Beta in right occipital lobe.  

High Beta together with Alpha in the frontal cortex seemed to be the most relevant 
frequency bands when used to classify between beginners and experts for each time 
period. In Figure 2 we can see the mean and standard deviation of High Beta com-
pared between beginners and experts.  
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Fig.2. High Beta power in the Frontal Cortex compared to baseline. As we can see, specially 

at the beginning of the session, High Beta values are bigger in beginners rather than experts. 
 
However when comparing alpha values in the frontal lobe between Beginners and 

Experts (Figure 3) we can see how Experts showed higher amplitude than beginners 
in this specific frequency band while beginners didn't showed big variations.  

 

 
Fig.2. Alpha Power in Frontal Cortex compared to Baseline. As we can see, Experts showed 

higher values of Alpha power than beginners while performing the trials. 

4 Conclusions 

Results of the audio analysis shows how while beginners improved the quality of the 
generated songs along trials experts maintained stable results, thus allowing us to 

Proceedings MML 2017, 6.10.2017, Barcelona, Spain 5



interpret differences between the brain signals of beginners and experts which are not 
time dependent (like fatigue or tiredness) and may reveal the effects of levels of ex-
pertise and skill acquisition.  

We have seen how the High Beta band together with Alpha in the frontal cortex 
seemed to be the best feature that allowed us to classify the EEG data between begin-
ners and experts using IBk (k=1) machine learning algorithm. Experts showed greater 
Alpha amplitudes than beginners while on the other hand beginners showed greater 
High Beta amplitudes. Nevertheless High Beta values decreased near to the expert 
levels between the middle and late period while Alpha remained stable in beginners 
throughout the session. 

References 

1. Gentili, R. J., Bradberry, T. J., Hatfield, B. D., & Contreras-vidal, J. L. (2008). A new gener-
ation of non-invasive biomarkers of cognitive-motor states with application to smart brain-
computer interfaces, (Eusipco). 
2.Emotiv Systems Inc. Researchers. (2014). Available online 
at: http://www.emotiv.com/researchers/ 
3. Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., et al. (2010). An 
open-source software platform to design, test, and use brain-computer interfaces in real and 
virtual environments. MIT Press J. Presence 19, 35–53. doi: 10.1162/pres.19.1.35 
4. MATLAB and DSP Toolbox Release 2013a, The MathWorks, Inc., Natick, Massachusetts, 
United   States 
5. Zoom. Available online at: https://www.zoom-na.com/es/products/field-video-
recording/field-recording/zoom-h4n-handy-recorder 
6. Alain de Cheveigne & Hideki Kawahara (2002) YIN, a fundamental frequency estimator for 
speech and music. Acoustical Society of America. [DOI: 10.1121/1.1458024] 
7. Quim Llimona. YIN pitch estimation toolbox (2015). GitHub repository,  
https://github.com/lemonzi/matlab/tree/master/yin  
8. Romaní Picas O., Parra Rodriguez H., Dabiri D., Tokuda H., Hariya W., Oishi K., & Serra 
X."A real-time system for measuring sound goodness in instrumental sounds", 138th Audio 
Engineering Society Convention (2015).  
9. Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online Ap-
pendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kauf-
mann, Fourth Edition, 2016. 
10. A Delorme & S Makeig (2004) EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics (pdf, 0.7 MB) Journal of Neuroscience Methods 134:9-21 
 
 

 
 
 

 
 

 

Proceedings MML 2017, 6.10.2017, Barcelona, Spain 6



What were you expecting? Using Expectancy
Features to Predict Expressive Performances of

Classical Piano Music

Carlos Cancino-Chacón1,2, Maarten Grachten2, David R. W. Sears2, and
Gerhard Widmer1,2

1 Austrian Research Institute for Artificial Intelligence
carlos.cancino@ofai.at

2 Department of Computational Perception, Johannes Kepler University Linz
{maarten.grachten,david.sears,gerhard.widmer}@jku.at

Abstract. In this paper we present preliminary work examining the re-
lationship between the formation of expectations and the realization of
musical performances, paying particular attention to expressive tempo
and dynamics. To compute features that reflect what a listener is expect-
ing to hear, we employ a computational model of auditory expectation
called the Information Dynamics of Music model (IDyOM). We then
explore how well these expectancy features – when combined with score
descriptors using the Basis-Function modeling approach – can predict
expressive tempo and dynamics in a dataset of Mozart piano sonata
performances. Our results suggest that using expectancy features signif-
icantly improves the predictions for tempo.

Keywords: Musical expression, Information theoretic features, IDyOM, RNNs

1 Introduction

Computational models of musical expression can be used to explain the way
certain properties of a musical score relate to an expressive rendering of the
music [12]. However, existing models tend to use a combination of high- and low-
level hand-crafted features reflecting structural aspects of the score that might
not necessarily serve as perceptually relevant features. An example of such a
model is the Basis-Function modeling approach (BM) [7].

To examine the relationship between the formation of expectations during
music listening on the one hand, and the realization of musical performances on
the other, Gingras et al. [4] employed the Information Dynamics of Music model
(or IDyOM) [10], a probabilistic model of auditory expectation that computes
information-theoretic features relating to the prediction of future events. In their
study, these information-theoretic features were shown to correspond closely
with temporal characteristics of the expressive performance, which suggests that
the performer attempts to decrease the processing burden on listeners during
perception by slowing down at unexpected/uncertain moments and speeding up
at expected/certain ones.
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Here we present preliminary work to support the claim that expectancy mea-
sures can inform predictions of expressive parameters related to tempo and
dynamics. We extend the work in [4] in two ways. First, rather than simply
demonstrating that expectancy measures are related to expressive performances,
we show that the use of expectancy features improves the predictive quality
of models using other score descriptors, thus providing a more comprehensive
framework for the modeling of expressive performances in music of the common-
practice period. Second, as opposed to fitting the expectancy features to each
performance (i.e. training and testing the model on the same performance), the
models presented in this paper are evaluated by measuring their prediction error
on unseen pieces.

The rest of this paper is organized as follows: Section 2 presents our formal-
ization of expressive parameters, describes the score and expectancy features
employed in this study, and finally outlines the regression model used to pre-
dict the expressive parameters. Section 3 describes the empirical evaluation of
the proposed approach, the results of which are discussed in Section 4. Finally,
conclusions are stated in Section 5.

2 Modeling expressive performances

In this section we provide a brief description of the proposed framework. First we
describe how expressive dynamics and tempo are encoded. Second, we describe
the expectancy and score features. Finally we describe the recurrent neural net-
work (RNN) models used to connect the input features to the expressive targets.

2.1 Targets: Expressive Parameters

An expressive parameter is a numerical descriptor that corresponds to common
concepts involved in expressive piano performance. We take the local beat pe-
riod ratio (BPR) as a proxy for musical tempo. We average the performed onset
times of all notes occurring at the same score onset and then compute the BPR
by taking the slope of the averaged onset times (in seconds) with respect to
the score onsets (in beats) and dividing the resulting series by its average beat
period. For dynamics, we treat the performed MIDI velocity as a proxy for loud-
ness. We take the maximal performed MIDI velocity per score onset, divided by
127. This expressive parameter will be denoted VEL. To explore how well the
expectancy and score features describe the relative changes in BPR and VEL,
we also calculate their first derivatives, denoted by BPRd and VELd, respec-
tively. Furthermore, including the derivative time series allows us to compare
our findings with the results obtained in [4].

2.2 Features: Multiple Viewpoints

Expectancy Features IDyOM provides a conditional probability distribution
of a musical event, given a preceding sequence of events, i.e. p(vn | vn−1, vn−2, . . . ).
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Following [4], we use IDyOM to estimate two information-theoretic measures
representing musical expectations:

1. Information content (IC). The IC measures the unexpectedness of a
musical event, and is computed as IC(vn) = − log p(vn | vn−1, vn−2, . . . ).

(a) ICm. The information content for each melody note. This value is com-
puted using a model that is trained to predict the next chromatic melody
pitch using a selection of melodic viewpoints, such as pitch interval
(i.e. the arithmetic difference between two consecutive chromatic pitches,
measured in MIDI note values), and contour (whether the chromatic
pitch sequence rises, falls or remains the same). IDyOM performs a step-
wise selection procedure that combines viewpoint models if they mini-
mize model uncertainty as measured by corpus cross entropy [11].

(b) ICc. Estimation of the IC computed for the combination of pitch events
(a proxy for harmony) at each score onset. IDyOM predicts the next
combination of vertical interval classes above the bass (see Score Features
1b).

2. Entropy is a measure of the degree of choice or uncertainty associated with a
predicted outcome. The entropy can be computed as H(vn) = E{− log p(vn |
vn−1, vn−2, . . . )}.
(a) Hm. Entropy computed for each chromatic pitch in the melody.
(b) Hc. Entropy computed for the combined pitch events at each score onset.

Score Features Following [7], we include low-level descriptors of the musical
score that have been shown to predict characteristics of expressive performance.

1. Pitch.
(a) (pitchh, pitchl, pitchm). Three features representing the chromatic pitch

(as MIDI note numbers divided by 127) of the highest note, the lowest
note, and the melody note at each onset.

(b) (vic1, vic2, vic3). Three features describing up to three vertical interval
classes above the bass, i.e. the intervals between the notes of a chord
and the lowest pitch, excluding pitch class repetition and octaves. For
example, a C major triad (C, E, G), starting at C4 would be represented
as (pitchl vic1 vic2 vic3 ) = ( 60

127
4
11

7
11 0 ), where 0 denotes the absence

of a third interval above C4, i.e. the absence of a fourth note in the chord.
2. Metrical position.

(a) bφ,t. The relative location of an onset within the bar, computed as bφ,t =
t mod B

B , where t is the temporal position of the onset measured in beats
from the beginning of the score, and B is the length of the bar in beats.

(b) (bd, bs, bw). Three binary features (taking values in {0, 1}) encoding the
metrical strength of the t-th onset. bd is nonzero at the downbeat (i.e. when-
ever bφ,t = 0); bs is nonzero at the secondary strong beat in duple meters
(e.g. quarter-note 3 in 4

4, and eighth-note 4 in 6
8), and bw is nonzero at

weak metrical positions (i.e. whenever bd and bs are both zero).
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2.3 Recurrent Neural Networks

RNNs are a state-of-the-art family of neural architectures for modeling sequential
data. Following [1, 6], we use bidirectional RNNs as non-linear regression models
to assess how well the features described above predict expressive dynamics
and tempo. In this work, we use an architecture with a composite bidirectional
hidden layer with 5 units, consisting of a forwards and backwards long short-term
memory layer (LSTMs).

3 Experiments

We perform a 5-fold cross-validation to test the accuracy of the predictions of
three models trained on different feature sets for each expressive parameter: a
model trained only using expectancy features (E), a model trained only using
score features (S), and a model trained on both expectancy and score features
(E+S). Each model is trained/tested on 5 different partitions (folds) of a dataset,
which is organized into training and test sets, such that each piece in the corpus
occurs exactly once in the test set.

For this study we use the Batik/Mozart corpus, which consists of recordings
of 13 Mozart piano sonatas (39 movements) by Austrian pianist Roland Batik
performed on a computer controlled Bösendorfer SE [2]. Melody voices were
identified and annotated manually in this dataset. For each fold, we use 80% of
the pieces for training and 20% for testing. The parameters of the models are
learned by minimizing the mean squared error on the training set3. We evaluate
model accuracy with the coefficient of determination R2 and Pearson’s r.

4 Results and Discussion

The results of the 5-fold cross-validation are shown in Table 1. To examine the
differences between the R2 values of the E, S, and E+S feature sets we per-
formed a separate one-way ANOVA for each expressive parameter (BPR, BPRd,
V EL and V ELd). These differences were statistically significant in all cases at
the p < 0.05 level as measured by Fisher’s F ratio. The same trend emerged
for most expressive parameters, with E+S outperforming the other models,
although post-hoc pairwise comparisons using Tukey’s HSD only revealed a sig-
nificant difference for BPRd. These results therefore suggest that the models
including both expectancy and score features better predict expressive tempo
than expressive dynamics. Furthermore, although not directly comparable, the
values for R2 and r in Table 1 seem to be on par with those reported on Chopin
piano music using the BM approach [6].

The fact that the use of expectancy features improves model performance for
expressive tempo but not for dynamics might be due to the relation of expres-
sive tempo to structural properties of the music, such as phrase-final lengthening,
such as the final ritardando at the end of a piece [8]. Since expectation features

3 A repository containing the code is available online: https://github.com/

neosatrapahereje/mml2017_expression_expectation.
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Tempo Dynamics
Feature BPR BPRd VEL VELd

Set R2 r R2 r R2 r R2 r

E 0.038 0.201 0.067 0.259 0.234 0.496 0.185 0.429
S 0.065 0.289 0.105 0.326 0.299 0.569 0.244 0.494

E + S 0.072 0.288 0.124 0.351 0.312 0.574 0.230 0.477

Table 1. Predictive results for expressive tempo and dynamics, averaged over all pieces
on the Batik/Mozart corpus. A larger R2 and r means better performance.
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Fig. 1. Sensitivity plots for BPR (left) and BPRd (right). Each row in the plot cor-
responds to an input feature and each column to the contribution of its value at that
time-step to the output of the model at τ (the center of each plot). Red and blue
indicate a positive and negative contribution, respectively.

also relate to music structure in the sense that music tends to be more un-
predictable at boundaries between musical segments than within segments [9],
this may in part explain why the models are better at predicting changes in
expressive tempo BPRd.

Figure 1 shows 2D differential sensitivity maps that examine the contribu-
tion of each feature to the output of the model trained on all features (E+S).
Although these plots show that the score features have a more prominent role
in predicting expressive tempo, as suggested by the results in Table 1, we will
focus here on the contribution of the expectancy features. On the one hand,
the plots suggest a tendency for the performer to slow down if the next melodic
events are unexpected or uncertain (see the reddish hue in Hm and ICm for
time-steps > τ in the right plot), and to speed up if the previous melodic events
were unexpected or uncertain (the bluish hue in Hm and ICm for time-steps < τ
in the right plot), which is consistent with the findings reported in [4]. On the
other hand, while a passage consisting of uncertain harmonic events contributes
to an overall slower tempo (the reddish hue in row Hc in the left plot), there is a
tendency to speed up if the current harmonic event is unexpected or uncertain
(the bluish hue in Hc and ICc at τ in the right plot).
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5 Conclusions

In this paper we presented a model for predicting expressive tempo and dynam-
ics using a combination of expectancy and score features. Our results support
the view that expectancy features, as reflecting what a listener is expecting to
hear, can be used to predict the way pianists perform a piece. The sensitivity
analysis also found some evidence relating to well-known rules/guidelines for
performance [3, 4]. Future work may include the use of expectancy features in
combination with larger sets of score descriptors (such as those in [5, 1]), and
derive expectancy features from deep probabilistic models trained directly on
(polyphonic) piano-roll representations.
Acknowledgements This work has been funded by the European Research Coun-
cil (ERC) under the EUs Horizon 2020 Framework Programme (ERC Grant
Agreement No. 670035, project CON ESPRESSIONE).
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Abstract. This paper reports on jazz chord sequence generation with
semiotic patterns. Semiotic patterns represent coherence within the se-
quence and can be derived directly from a template piece using the
method of inverse substitution. Instantiations of semiotic patterns are
sampled using a statistical model trained on a corpus. Iterated random
walk and Gibbs sampling are applied and properties of the sampling
methods are discussed.
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1 Introduction

All music generation methods must contend with the problem of long term struc-
ture and repetition. It is generally accepted that context models (finite state,
Markov and Hidden Markov Models) are insufficient, and that intra-opus repe-
tition or coherence and inter-opus recurrence are distinct phenomena requiring
different computational modelling techniques. Early work [1] interpolates short
and long term models, where the former are trained on the particular sequence,
and the latter on a corpus of stylistically related music. A more recent approach
[2, 3] is to extract intra-opus repetition from a template piece, describing it us-
ing a semiotic pattern, then respecting that pattern during generation from a
statistical model of a corpus.

With a statistical model of music, one can apply optimization methods to pro-
pose a few high probability sequences (e.g. [4, 5]) or can apply sampling methods
to explore the broad probability distribution of a model, followed by drawing a
few sequences from desired ranges [6, 5, 7, 2]. In this paper the semiotic pattern
method is extended from trance [2] to jazz chord sequences, and the properties
of iterated random walk and Gibbs sampling are discussed with application to
a jazz song template.

2 Methods

2.1 Data

In this study a statistical model is trained (Section 2.2) on the Weimar Jazz
Database (WJazzD) [8], a curated collection of 456 jazz standards, containing a

Proceedings MML 2017, 6.10.2017, Barcelona, Spain 13



chord Fmaj7 G7 Gm7 C7 Am7b5 D7 Gm7
dur ­ ­ ¯ ¯ ¯ ¯ ¯
root F G G C A D G
triad M M m M d M m
seventh 7 b7 b7 b7 b7 b7 b7

int(root) ⊥ M2 P1 P4 M6 P4 P4
int(triad) ⊥ MM Mm mM Md dM Mm
int(seventh) ⊥ 7b7 b7b7 b7b7 b7b7 b7b7 b7b7

Fig. 1. The first 7 chords of the jazz standard Desafinado (Jobim and Mendonça;
solo by Art Pepper as WJazzD record #3) with basic viewpoints (top), three derived
viewpoints (middle) and three constructed interval viewpoints (bottom).

total of ≈ 29, 000 chords. Pickup measures are ignored and where the form (e.g.
AABA) is annotated in the WJazzD only the first iteration of the chorus is used
in building a statistical model, thereby removing chord sequence duplications
introduced by intra-opus repetitions of the same chorus. These reductions lead
to a training set of ≈ 17, 000 chords.

Figure 1 shows a short chord sequence. From each chord symbol is derived
a root, triad, and seventh. Note that pitches and intervals are represented by
spelled pitches and diatonic intervals. Due to the sparsity of the WJazzD for
chords above the seventh (ninths and above, altered chords, etc.), these are
not considered in this study. Slash chords are ignored and since chord roots
sharper/flatter than A]/C[ are absent from the corpus, they are not considered
as part of chord types. Thus all chords are collapsed into a root, a triad (ma-
jor, minor, augmented, diminished, and sus4) and a seventh (none, major sev-
enth, minor seventh, and diminished seventh), giving a total of 306 chord types.
Contiguous self-self transitions resulting from collapsing chords are merged and
component durations are added.

2.2 Statistical model for chords

To describe the pieces in the corpus on different levels of abstraction, and
deal with sparse data, a viewpoint model is used. A viewpoint τ is a func-
tion that maps an event sequence e1, . . . , e` to a more abstract derived sequence
τ(e1), . . . , τ(e`), comprising elements in the codomain [τ ] of the function τ .

To create a statistical viewpoint model, consider two successive chords a and
b, and let v = (int(root)⊗ int(triad)⊗ int(seventh))(b | a). Following the derivation
in [2], the conditional probability P(b | a) can be written in the form

P(b | a) = P(v)× P(b | v, a) (1)

which, if b is fully determined by a and v, simplifies to P(b | a) = P(v).
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Following the methods described in [2], a viewpoint model for the viewpoint
int(root)⊗int(triad)⊗int(seventh) was learned from the WJazzD corpus. Smooth-
ing is applied so that all possible elements of [int(root)⊗ int(triad)⊗ int(seventh)]
have non-zero probabilities, ensuring that Gibbs sampling (Section 2.4) con-
verges to the target sequence distribution. A transition matrix over all chords
is compiled according to (1). The information content (IC) of a sequence e is
− log2 P(e). Note that for a pattern Φ the conditional probability P(e | Φ) is
simply a scaling of P(e) by the normalization constant P(Φ).

2.3 Semiotic patterns

The semiotic pattern representation developed in [2] is used to represent intra-
opus coherence. A semiotic pattern is a sequence of features, each being a view-
point and value or variable. In this paper only the chord viewpoint will be used
in patterns, thus a pattern can be viewed as a sequence of variables and concrete
chord values.

A substitution µ is a mapping from all variables in a pattern to chords, and
an instance e of a pattern Φ is an event sequence given by the application of
a substitution: e = Φµ. In some situations it is desirable to partially specify
a substitution by locking some variables, then µ will be an extension of the
initial substitution. Substitutions here are required to be injective, that is, no
two variables can map to exactly the same chord.

An inverse substitution µ−1 has the property that Φµµ−1 = Φ. An inverse
substitution creates a pattern Φ = eµ−1 from one specific piece e, and is a
standard generalization operator in machine learning [9]. A least general inverse
substitution can be created by using a fresh variable for every distinct chord
appearing in the sequence.

2.4 Sampling methods

Statistical models are used to rank the space of sequences instantiating a given
pattern by increasing IC. Since this space is too large to enumerate, it must be
sampled, and three methods are applied here:

– Iterative random walk (IRW): perform random walk while at each position
assuring that the sequence up to that point is a partial instantiation of Φ
[2]. Iterate this process many times to generate a sample of solutions.

– Gibbs sampling: given a current substitution µ, choose a variable ρ ∈ dom(µ),
and select a new substitution µ′ = µ[ρ 7→ a] and sequence e′ = Φµ′ with
probability

P(e′)∑
a P(Φµ[ρ 7→ a])

and set µ← µ′ in preparation for the next iteration. The process is initiated
with some solution e = Φµ (generated by IRW), and iterated to generate a
sample of solutions.
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– Gibbs sampling starting from a template: given the template e, pattern Φ
and a least general inverse substitution µ−1, µ determines one instantiation
of the pattern, and therefore may also be used as the first instantiation of
the pattern during Gibbs sampling. This focuses the early steps of sampling
towards sequences similar to the template.

3 Results

To study the chord sequence generation method, least general inverse substitu-
tions are used to create semiotic patterns from template pieces in the WJazzD.
For illustration, the piece Anthropology (Charlie Parker and Dizzy Gillespie; solo
by Art Pepper as WJazzD record #1) is chosen as a template.

Figure 2 (top) shows the distribution of IC produced by running 10000 itera-
tions of each method described in Section 2.4. The horizontal red line shows the
IC of the template sequence itself and the number of unique sequences produced
is shown at the mean of each method. It is apparent that Gibbs sampling reaches
a smaller fraction of the space touched by IRW. The diversity (number of unique
sequences) produced by Gibbs sampling (n = 2453) is lower than IRW, which
produced a unique sequence at every iteration. As expected, Gibbs sampling
from the template reaches the lowest IC sequences, though with even smaller
diversity than regular Gibbs. Interestingly both variants of Gibbs sampling visit
sequences with lower information content than the template itself.

The next experiment evaluates diversity of the top k (lowest IC) solutions
produced, simulating a real situation where a composer may be interested in, say,
just the top 10 sequences. 10000 iterations of each method are run 100 times,
and statistics of the top 10 sequences are compiled: the information content
distribution, the average similarity between sequences in the set (measured as
the proportion of identically instantiated variables), and average similarity to the
template sequence. Figure 2 (bottom) shows the results. For IRW the intra-10
set similarity is low and varies little over the 100 runs. For Gibbs the mean intra-
10 similarity is high, and also Gibbs with the template as the starting sequence
consistently produces a very low diversity set. As expected (blue boxes), where
Gibbs sampling starting from a template produces sequences with high similarity
to the template.

Finally some fragments of generated chord sequences, corresponding to the
first phrase of the template Desafinado, are shown in Figure 3 (durations are
retained from the template but not shown here). The Fmaj7 chord, which artic-
ulates the tonality of the piece, has been locked.

4 Conclusions

This paper has applied viewpoint modelling, semiotic patterns, and sampling
to the task of jazz chord sequence generation. Presented for one template in
this paper, some behaviours of the different sampling algorithms emerge: IRW
provides a better spread of the sequence space while Gibbs tends to sample fewer
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Fig. 2. IC distribution (top): n is the number of unique sequences sampled in 10000
iterations; diversity (bottom) for the template Anthropology.

sequences though at better IC ranges, with a lower median IC. The tentative
conclusion is that if resources are available, IRW can be a good sampling method
for chord sequences while Gibbs will reach good solutions in resource-bounded
situations.
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µ µ­ ­ ¯ ¯ ¯ ¯ ¯ ¯ ­ ­ ­ ­
template (129) Fmaj7 G7 Gm7 C7 Am7b5 D7 Gm7 A7 D7 G7 Gbmaj7 Fmaj7

IRW (96) Fmaj7 Fm7 Bb7 F7 Bbm7 Eb7 Bb7 Ab7 Eb7 Fm7 C7 Fmaj7

Gibbs (80) Fmaj7 Fm7 Bb7 EbM7 Cm7 F7 Bb7 Eb F7 Fm7 C7 Fmaj7

GibbsT (81) Fmaj7 Dm7 G7 CM7 Am7 D7 G7 CM D7 Dm7 C7 Fmaj7

Fig. 3. Fragment (first phrase) of the lowest IC generated sequence for each method
(10000 iterations), template Desafinado. One chord of the following phrase is shown.
In brackets is the IC of the entire sequence.
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Abstract. The assessment of the sound properties of a performed mu-
sical note has been widely studied in the past. Although a consensus
exist on what is a good or a bad musical performance, there is not a
formal definition of performance tone quality due to its subjectivity. In
this study we present a computational approach for the automatic assess-
ment of violin sound production. We investigate the correlations among
extracted features from audio performances and the perceptual quality of
violin sounds rated by listeners using machine learning techniques. The
obtained models are used for implementing a real-time feedback learning
system.

Keywords: Machine learning, Violin sound quality, Automatic assess-
ment, Timbre dimensions, Audio features

1 Introduction

The quality of a performed sound is assumed to be a contribution of several
parameters of sound such as pitch, loudness and timber. Eerola et al. (2012)
identify 26 acoustic parameters of timbre among several instrument groups, that
combined produce a particular sound quality, which might reflect a particular
instrument performance technique, and/or the expressive intentions of the per-
former. Automatic characterization of dynamics and articulation from low level
audio features has been studied by Maestre & Gómez (2005) in the context
of expressive music performance. Knight et al. (2011) study the automatic as-
sessment of tone quality in trumpet sounds using machine learning techniques.
Romani Picas et al. (2015) make use of machine learning techniques to iden-
tify good and poor quality notes given training data consisting of low and high
level audio features extracted from performed musical sounds. However, whereas
pitch and dynamic measurements can be easily obtained from a computational
perspective, a measure for timbre quality involves significant complications given
that the exact formulation of timbre dimensions are still a matter of debate.

In this study we present an approach to automatically assess tone quality.
Our aim is twofold: firstly, to understand the correlations between the proposed
tone qualities, the ones previously used in the literature (e.g. Romani Picas
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et al. (2015)) and the features extracted from the audio signal, and secondly,
to generate machine learning models to predict the different proposed quality
dimensions of the performance from the audio features. We have investigated the
relationship between the terms that musicians use for quality assessment (e.g.
clarity, warmth, depth, brilliance, resonance, richness, power) and low-level audio
features (e.g. spectral centroid, spread, skewness, kurtosis, slope, decrease, roll-
off point, flatness, spectral variation, spectral complexity, spectral crest MFCCs,
and the energy in specific frequency bands), using machine learning techniques,
based on the recordings and evaluations by music experts.

The predictive models were implemented and incorporated into a real-time
feedback learning system, able to give automatic feedback about the timbral
properties (Timbral dimensions) of exercises/notes being performed.

2 Methodology

2.1 Feature extraction and feature selection for real-time audio
analysis.

Low and high-level audio features were extracted from the audio signals in
both temporal and spectral domains using the Essentia library (Bogdanov et al.
(2013)), using a frame size of 23ms, with a hop size of 11.5ms. On the other hand,
perceptual tests to assess the quality of performed notes was conducted, in which
30 participants (with at least one year of musical training) were asked to mark
sound quality in terms of predefined dimensions: dynamic, pitch and timbre sta-
bility, pitch accuracy and timbre richness, on a 7-point Likert scale. 27 Violin
sounds were obtained from the public available data base by (Romani Picas
et al. 2015), and selected in order to cover an homogeneous range of the violin’s
tessitura. Similarly, a proposed list of tone qualities (see Table 1), defined by
music educators, was presented in pairs to the listener (e.g. Bright/Dark) to
grade the sounds along a 7-point Likert scale.

Table 1: Proposed list of tone qualities by music experts

Tone Qualities
Dark Bright
Cold Warm
Harsh Sweet
Dry Resonant
Light Heavy
Grainy Pure
Coarse Smooth
Closed Open

Restricted Free
Narrow Broad
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2.2 Dynamics and intonation dimensions

Dynamics and pitch values were extracted from the audio by extracting the
energy of the signal based on a frame-based calculation of the Root Mean Square
(RMS), as well as, by obtaining frame based pitch values.

Pitch Accuracy (PA) . Pitch accuracy was measured in terms of the deviation
in cents of the measured pitch to the closest tempered semitone. The actual pitch
value was calculated in real-time on a frame basis (at 66 fps) using the Essentia
Pitch Detection library. The obtained pitch values were smoothed using a 10
point average filter. Pitch accuracy was then obtained by obtaining the absolute
difference between the pitch value and the closest semitone, and dividing by 50
cents (i.e. half of a semitone size). Thus, pitch accuracy ranges from 0 to 1, where
the maximum deviation allowed is a semitone.

Pitch Stability (PS) . Pitch stability was calculated based on the standard
deviation of the obtained frame-based value over a 300 ms historic window.
Firstly, pitch frame-based values obtained with the Essentia Pitch Detection
library were smoothed by applying a 10 point average filter. Standard deviation
was calculated over a historical 300ms window. Low standard deviation values
were assumed to indicate high pitch stability and vice versa.

Dynamic Stability (DS) . Dynamic stability was obtained by calculating
the standard deviation of the energy over a 600 ms historic window. Firstly,
we calculated a frame-based RMS (Root Mean Square) values. RMS values are
later converted to decibel (dB) values and smoothed using a 10 point average
filter. The standard deviation of the filtered RMS values was calculated over a
600 ms historical window. Similarly to pitch stability calculation, low standard
deviation values were assumed to correspond to high dynamic stability and vice
versa.

2.3 Timbral Dimensions Calculation

Timbral dimensions were calculated by training models which combined sev-
eral of the audio features extracted with the Essentia library (Bogdanov et al.
(2013)). Feature selection was performed over spectral descriptors, known to be
close related to timbral characteristics of sound (see Peeters et al. (2011) for an
overview), to obtain a subset of tonal descriptors that best predict each of the
studied timbral dimension. The selected features include pitch, energy, spectral
time-varying descriptors (centroid, spread, skewness, kurtosis, slope, decrease,
rolloff, flatness, crest), spectro-harmonic (tristimulus 1, tristimulus 2, tristimu-
lus 3, harmonic energy, noise energy). Mean and standard deviation over a 300
ms window was considered as well, for all the set of descriptors.
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Timbre Stability (TS) and Timbre Richness (TR) The spectrum was
obtained from the audio frame by means of the Fast Fourier Transform (FFT)
and peak detection was performed on the spectrum afterwards. Based on the
actual pitch value detected, the harmonic peaks were selected, allowing a 20%
deviation from the ideal harmonic series. Later, spectral harmonic features, (e.g.
tristimulus 1, 2 and 3) as well as time varying spectral features (e.g. kurtosis,
skewness) were calculated.

2.4 Sound Dimensions Modelling.

Machine learning techniques were used to generate models to predict the differ-
ent quality dimensions from the extracted features. Feature selection techniques
were applied in order to obtain the subset of low level (frame-based) descriptors
that best predict each of the studied sounds dimensions. Several machine learn-
ing schemes were compared, i.e., Linear Regression, M5-trees, Artificial Neural
Networks, and Support Vector Machines.

Stability of pitch energy and timber Models were trained, to map the
calculated standard deviations of the highest pitch stability rated sounds to 1
(good pitch stability) and, conversely, the bad examples to 0 (bad pitch stabil-
ity). Correspondingly,models were trained to map the standard deviation values
calculated in good/bad dynamic stability examples with a corresponding 0 to 1
dynamic stability value.

Timbre richness and stability Previously selected features were used to train
models to order to best predict the ratings obtained on the surveys for timbral
properties. For both Timbre Stability and Timbre Richness logistic regression
models were obtained, using combinations of spectral features explained in Sec-
tion 2.1.

3 Results

3.1 Tone survey

Consistency among participants ratings was assessed using Cronbach’s coefficient
(alpha). An acceptable degree of reliability was obtained (alpha>80, MCGraw
and Wong, 1996) for all the sound examples. On the other hand, higher correla-
tions (i.e. CC>0.8) were obtained between the overall quality of the sound and
pitch stability/timbre richness.

3.2 Models accuracy

In Table 2 we present the Correlation Coefficient Index (CCI) obtained by the
different models studied for the prediction of the rating on each of the dimen-
sions considered. The obtained CCI of the models is presented as calculated in
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both the Train Set (TS) and on a 10-Cross Fold validation scheme (CV), as an
indicator of over-fitting. Consideration was also taken in terms of the feasibility
of implementation of the models in a real-time application, giving priority to
the ones less computationally expensive. For all the dimensions studied linear
regression models were selected because of its overall good performance in terms
of accuracy, low computational cost, and simplicity for implementation.

Table 2: Accuracies (CCI) for different sound’s dimensions quality

Sound Dimension
Lin.Reg Reg-Trees SVMreg ANN

cv / train cv / train cv / train cv/ train
Pitch Accuracy 0.89 / 0.80 0.60 / 0.88 0.79 / 0.86 0.64 / 0.72
Pitch Stability 0.80 / 0.91 0.82 / 0.98 0.81 / 0.88 0.68 / 0.68
Dynamic Stability 0.82 / 0.84 0.67 / 0.87 0.78 / 0.85 0.69 / 0.65
Timbre Stability 0.80 / 0.89 0.63 / 0.91 0.86 / 0.81 0.60 / 0.75
timbre Richness 0.78 / 0.86 0.71 / 0.97 0.85 / 0.80 0.60 / 0.66

3.3 Real-time feedback learning widget

The aforementioned sound dimensions models for measuring the goodness in
terms of the intonation, dynamics and tone, were presented in a intuitive graphic
user interface, on the Violin RT app, as illustrated in Figure 1. Each sound
dimension is presented on each axis of a spider chart, aiming at an intuitive user
interaction in which the best sound quality is obtained when the chart is full
filled.

Fig. 1: Real-time feedback system learning system screen shoot
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4 Conclusions

In this paper a computational approach to automatically assess the quality of
performed violin sounds was proposed. We conducted perceptual tests on the
quality of recorded sounds based on previous defined quality dimensions, and
studied the correlation among the different quality dimensions. Energy and spec-
tral descriptors were extracted from the audio signal and machine learning mod-
els were obtained to predict the different quality dimensions from the audio
features. Results indicate consistency among users responses, and the obtained
models accuracy suggests that the extracted audio features contain sufficient
information for characterizing the proposed tonal dimensions. Ongoing work in-
cludes extending the recording data, as well as modelling other tonal dimensions.
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Abstract. This paper presents a method for generating album cover art
by including side information regarding the music content. In this pre-
liminary work, using state of the art Generative Adversarial Networks
(GAN), album cover arts are generated given a genre tag. In order to
have a sufficient dataset containing both the album cover and genre, the
Spotify API was used to create a dataset of 50,000 images separated into
5 genres. The main network was pre-trained using the One Million Audio
Cover Images for Research (OMACIR) dataset and then trained on the
Spotify dataset. This is shown to be successful as the images generated
have distinct characteristics for each genre and minimal repeated tex-
tures. The network can also distinguish which genre a generated image
comes from with an accuracy of 35%.

Keywords: Cover art generation, Generative Adversarial Networks, Genre
classification

1 Introduction

Music and visual effects are often linked together and can provide a multi-sensual
experience to the user. Given a small set of songs, images could be chosen or
created by hand to fit a song or album. However, this becomes unrealistic as
the size of the music collection increases. For instance, consider popular website
platforms in which users upload their own music. For instance, SoundCloud1

has 12 hours of music and audio uploaded every minute, from over 150 million
independent users. Also, a great deal of effort has been recently devoted to the
automatic generation of music using deep learning [3]. For example, Jukedeck2 is
a platform that uses deep neural networks to generate unique songs from a user
specified style and feeling. Stock images are currently displayed but it is more
aesthetically pleasing to have a unique image for each song that also reflects
some characteristics found within the music. This paper aims to address this by
automatically generating an image at the same time as the music content, where
the image is unique and reflects some of the characteristics of music. As musical
genres are common proxies to categorise and describe music, we use genre labels
as a first abstraction of music properties.

1 https://soundcloud.com/
2 https://www.jukedeck.com/
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2 Image generation using Generative Adversarial
Networks

State-of-the-art approaches in image generation include those based on Gen-
erative Adversarial Networks (GANs)[2, 1, 4]. The framework is based on two
complementary networks, namely a discriminative (D) network which tries to
classify data into sets and a generative (G) network which is used to create new
data from a prior distribution. In GANs a generative and discriminative neural
network is pitted against each other, posing a minimax problem. New images
are generated using G, using noise samples as a seed. Then the newly generated
images are used as an input along with real images to D. D then tries to classify
which data is real or generated. The variables in D are optimised to be able to
distinguish between real and generated data, whilst the variables in G are opti-
mised to fool D into classifying the generated data as real. As such, G learns how
to create real looking data simultaneously as D learns to discriminate between
generates images and images from the dataset.

In a similar fashion, a Deep Convolutional Generative Adversarial Network
(DCGAN) is a GAN which makes use of convolution layers [6]. This can either
be in just the generator or both the generator and discriminator. DCGANs
achieve better results when generating complex images. Using a combination of
up-sampling and transpose convolution layers in the generator produces higher
resolution images that look more lifelike.

Finally, the recent Auxiliary Classifier Generative Adversarial Network (AC-
GAN)[5] code some descriptive variables into the noise which is used as an
input to the generator network. The discriminator then tries to predict these
descriptive variables resulting in more consistent training of both the networks as
well as being able to specify classes of images. Additionally, they also introduce
the use of latent variables in order to make training GANs more consistent.
These are random variables that are generated for every generated image and
used within the noise vector as input to the generator network. The discriminator
then predicts what the random variables used to generate the image are. The use
of these latent variables as well as class labels to conditionally generate examples
lead to more realistic images as well as being able to generate any class from the
pre-specified set of classes.

3 Experiments

Our first goal in this work is to empirically show that it is possible to automat-
ically generate album covers using GANs. As compared to standard image and
computer vision datasets, album covers have a huge variety of objects in them
as well as different art styles. The limited availability of labelled training data is
also a challenge. Finally, we will show how to use AC-GANs to incorporate the
genre information into the generation process.
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3.1 Genre agnostic generation: One Million Audio Cover dataset

The One Million Audio Cover Images for Research (OMACIR) is a dataset con-
structed from a variety of sources containing over one million album cover arts3.
These images are a mixture of greyscale and RGB images, all of different sizes.
There are also a large number of repeated images throughout the dataset which
would strongly affect any image generation algorithm. A hash based technique
was used to detect and remove 798982 duplicate images. All images were resized
to 64x64 and standardised so that values lie in the region (-1,1) with a mean
of 0. To generate images from an AC-GAN network trained on the OMACIR
dataset which lacks classes, we had to modify the cost function to only optimise
w.r.t. generating realistic images and predicting latent variables.4

Table 1. Network architectures used in the AC-GAN network when generating al-
bum covers from both the One Million Cover Images for Research dataset and Spotify
dataset, both using 2 latent variables. In the discriminator fully connected 1 is respon-
sible for predicting whether an image is generated or from the dataset, fully connected
2 is responsible for predicting the class label and fully connected 3 is responsible for
predicting the latent variables. Transposed convolution is often referred to as deconvo-
lution.

Generator
Layer Input Filter Output Upsampling Activation

Fully connected 1 1x100 100x16384 1x16384 0 Linear
Reshape 1x16384 4x4x1024 0
Transpose Convolution 1 4x4x1024 4x4x512 8x8x512 2 ReLU
Transpose Convolution 2 8x8x512 4x4x256 16x16x256 2 ReLU
Transpose Convolution 3 16x16x256 4x4x128 32x32x128 2 ReLU
Transpose Convolution 4 32x32x128 4x4x3 64x64x3 2 Tanh

Discriminator
Layer Input Filter Output Stride Activation

Convolution 1 64x64x3 4x4x128 32x32x128 2 Leaky ReLU
Convolution 2 32x32x128 4x4x256 16x16x256 2 Leaky ReLU
Convolution 2 16x16x256 4x4x512 8x8x512 2 Leaky ReLU
Convolution 2 8x8x512 4x4x1024 4x4x1024 2 Leaky ReLU
Reshape 4x4x1024 1x16384 0
Fully connected 1 1x16384 16384x1 1x1 0 Linear
Fully connected 2 1x16384 16384x5 1x5 0 Linear
Fully connected 3 1x16384 16384x2 1x2 0 Linear

The network architecture used is detailed in Table 1. The best network pa-
rameters, found via a grid search, include a generative learning rate of 0.002, a
discriminative learning rate of 0.001 and a batch size of 128. The input noise

3 https://archive.org/details/audio-covers
4 Code can be found at https://github.com/alexhepburn/cover-art-generation.
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is taken from a uniform distribution in the region (-1, 1). Overall the resulting
images in Fig. 1 are of good visual quality with minimal repeated textures and
have properties which are indicative of album covers.

(a) Original album covers. (b) Generated album covers.

Fig. 1. AC-GAN trained on the OMACIR dataset.

3.2 Genre aware generation: Spotify dataset

Although OMACIR is extremely useful due to the amount of images, it con-
tains no metadata of artists, genres or album names. To compile a dataset that
contains such metadata, the Spotify API5 was queried with a variety of genres
(Jazz, Dance, Rock, Rap and Metal) and the first 10,000 unique album names
were recorded for each genre. While it has been established that a deep learn-
ing network can generate realistic looking album cover art from the OMACIR
dataset, our objective is to generate album covers given prior knowledge about
the album itself. To do so requires the use of an AC-GAN network whereby the
genre is the descriptive variable used. In order to decrease overfitting an AC-
GAN network was first pre-trained using OMACIR and then trained using the
Spotify dataset. A discriminative learning rate of 2 · 10−5, a generative learning
rate of 1 · 10−5 and a batch size of 128 were found to be optimal.

One major flaw when training AC-GANs is that the generator may collapse
and always output the same image. One popular method of tracking diversity
amongst classes is the use of multi-scale structural similarity (MS-SSIM) [7]. MS-
SSIM is an extension of the well known structural similarity index. A high MS-
SSIM index for a generated class indicates that there is little variation amongst
generated images and as such the generator has collapsed. The MS-SSIM scores

5 https://developer.spotify.com/web-api/
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Fig. 2. Images generated from the final AC-GAN network. The network was pre-trained
using the OMACIR dataset and then trained using the Spotify dataset.

between real and generated images within the same genre have a similar distribu-
tion to the MS-SSIM scores between just the real images, as shown in Fig. 3(a).
This means that in terms of MS-SSIM, the real and generated images are in-
terchangeable without affecting the MS-SSIM distribution. Although variance
within classes is important, perhaps more important is being able to distinguish
which class an image is generated from. Given a generated image, the cross-
validated discriminator accuracy for genre classification is 35 ± 2%. For images
from the Spotify dataset, the network is able to correctly predict the genre with
an accuracy of 47±4%. To establish a baseline for predicting genres of an album
cover, a separate network was trained to predict which genre a real album cover
belonged to. The network has the same architecture as the discriminator detailed
in Table (1) and has a cross-validated accuracy of 59 ± 4%. This implies that
there can be improvements in combining both classifying genres and generat-
ing images into one network. To explore the visual characteristics of each class,
images were generated using the same random and latent variables but with
different genres. Fig. 3(b) shows that changing the genre has a different effect
depending on the image, although general trends can be spotted. For example,
rap covers are noticeably darker while jazz albums are overall lighter. Jazz and
rap have more soft light colours whereas the rest have more black harsh shapes,
however they all have a similar colour palette. This means the image structure
or colour palette is represented in the latent and random variables whereas the
style is specified by the genre. This is a positive result as different genres can use
the same objects on their album covers but they each have an distinguishable
style to them.
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(a) MS-SSIM for each genre between 1000 real
and 1000 generated examples.

(b) Effect of using same noise and
latent variables but different genre.

Fig. 3. Genre diversity of images generated from the AC-GAN network.

4 Conclusions

We have explored the conditional generation of album cover art using AC-GAN
architectures, using genre labels in the process. Overall the conditional gener-
ation of 64x64 album covers given a genre is possible, although there are still
repeated textures in the new images. Using AC-GANs opens up opportunities
to include more information about albums when generating cover art although
larger images will need to be generated for this to become feasible for a platform
such as SoundCloud.
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Abstract. In previous works we have shown that n−gram language
models may be successfully applied to style recognition tasks. Now we
present a different study, beyond the purely numerical results, examining
more closely some of those results. We have found that some of the
compositions might be considered as ‘outliers’ from a musical point of
view, and newer experiments allow us to confirm those musical analyses,
showing that our models’ musical features are useful for this task.
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1 Introduction

Music style recognition has been an increasing research field in the last years.
Up to now, most of the studies done aim to perform a better classification task,
according to the success rate.

Sometimes it is difficult, even to expert musicians, to distinguish between
composers when their styles are quite similar, often because the compositions
belong to the same stylistic context or time, but also because sometimes com-
posers wrote some of their pieces as an homage to other composers, writing in
their style. Apparently, the classification should be easier between composers
that are further in time than between those temporally closer. Particularly dif-
ficult is the known task of distinguishing between Mozart and Haydn: both
composers not only shared the same style, but they even dedicated some of
their string quartets to the other. A quiz with human listeners performed by
the CCARH center at Stanford University [4] shows that non-experts where ca-
pable of properly identifying the composer of a 51% of the pieces, whereas this
figure raises to only a 66% for self-reported expert listeners. In another recent
work [5], the authors reached 80.4% success rate for this task, using a visual
representation of musical scores and support vector machines.

When doing classification, maximizing the success rate is usually the target.
In this paper we take a second view over the results, trying to find, if possible, a
musical explanation to them. Starting from previous works [1], we take a closer
look at some of the individual musical pieces, finding that, in some cases, the
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classifier grounds its decision on very small differences among several models.
So the question is: should those results be rejected? On the other hand, we have
observed that some of the results seem not to correspond with the general style
of the composer, i.e., there are some compositions whose numerical results are
far from the mean of the rest of pieces in the training corpus.

These observations have led us to another important question: are those
pieces that seem to be quite different from the composer’s style different from a
musical point of view too? A simple musical comparison has shown that, in some
cases, some of those pieces are atypical within the whole musical production of
the composer. Then, we have performed new n−gram experiments in order to
support this musical analysis. The results allow us to verify that, indeed, they
agree with this musical analysis.

As an example, we will show two of the examples observed: the first movement
from Mozart’s string quartet KV 158 as an outlier, and the fourth movement
from quartet KV 168 as a tie.

2 Corpora and methodology

2.1 Methodology

From MIDI files, simple musical features (relative pitch intervals and duration
ratios) are extracted and converted to ASCII characters, following [2], so that
every MIDI file becomes a character sequence. For details on the method, the
reader is referred to [1]. Although the MIDI files considered are polyphonic,
they are structured in different tracks per voice, so for this particular study, as
explained below, only the soprano track (upper voice) will be considered and
encoded. Then, an n−gram model is built with all the text sequences of every
composer, following a leave-one-out scheme. The smoothing method applied is
a simple linear interpolation with models of lower n−order:

pI(wi|wi−n+1 · · ·wi−1) = λnpV(wi|wi−n+1 · · ·wi−1)

+ λn−1pV(wi|wi−n+2 · · ·wi−1)

+ · · ·
+ λ1pV(wi)

+ λ0pU(wi) (1)

where pI stands for the interpolated probability of the n−gram (wi−n+1 · · ·wi),
being wi a word of the music word sequence w = w1 · · ·wk, pV is the maximum
likelihood estimator, and pU is the uniform probability distribution. The weights
λn · · ·λ0 are adjusted using a validation set. For that, the whole data set for a
particular author is divided in 5 parts: 4 parts are used for training and 1 part
for validation. This is done 5 folds, obtaining 5 different models.

For a given new target work w, its perplexity against each model c is com-
puted as:

PPc(w) = k

√
1∏k

i=1 pI(wi|wi−n+1 · · ·wi−1)
(2)
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These results are averaged, obtaining a mean perplexity and a deviation for the
work.

2.2 Corpora

In our previous work [1] five composers were studied and their works com-
pared. The works used were: 52 from G. Ph. Telemann (1681–1767), 51 from
G. F. Händel (1685–1759), and 75 from J. S. Bach (1685–1750) from the Baroque
style; and 46 from W. A. Mozart (1756–1791) and 49 from F. J. Haydn (1732–
1809) from the Classical style. This corpus, which is varied in instrumentation,
musical form, and number of pieces, is the same as in [3]. For the present analysis
we have focused in the results obtained for individual works, trying to identify
those that deserve a closer study.

As shown in [1], the upper voice seems to be useful enough to perform a good
classification task, though its results are lower than those achieved when using
all the instrument’s information. For simplicity in the music analysis, we have
done the new experiments using information from the upper voices only.

3 Results

Figure 1 shows the results for every piece of one of the models for the same
composer. As an example, we show the results of Mozart using a decoupled rep-
resentation for pitch and duration (both properties for each note are represented
independently) and n−gram length n = 3. In this graph, the horizontal lines
represent the mean perplexity and the vertical ones represent the range of the
standard deviation. The result labeled MODEL is the result of the whole model,
followed by the individual results of every test piece in the model.
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Fig. 1. Graphical comparison of the perplexity of every Mozart’s quartet in the training
set against a model built with the rest of Mozart’s works in it, using independent
representations for pitch and duration, and n = 3.
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3.1 Mozart’s string quartet KV 158, 1st movement

Here we can see that there is a piece (KV 158-01) whose result is significantly
appart from the whole model (we consider to be significantly distant those pieces
whose mean is more than 2 × stdev from the mean of the model). Therefore,
the question arises as to whether it is actually a musically atypical piece in
Mozart’s style or it has some particular features not present in the rest of this
particular corpus. We have observed that this is indeed a non typical Mozart’s
piece, particularly in the rhythm of the main melodic motif (Figure 2), which
was not an usual rhythm in that period, and that it would rather seem to be
a sort of musical innovation or a kind of surprise tried by Mozart in this first
movement of the string quartet.

G234
C

.ˇ
Z Z Y

3ˇ ˇ GÜǙ ˇ
Fig. 2. Main melodic motif from the beginning of the first movement of Mozart’s string
quartet KV 158 and its rhythmic representation. The characters are the encoding [2]
of the inter-onset ratios of every pair of consecutive notes (e.g. ‘Z’ encodes the ratio =
1 of a pair of equal duration notes).

In order to verify that the anomaly is found in the rhythm, we have performed
two additional experiments using both the melodic and rhythmic information
alone, and we have compared their results with the previous experiment using
them combined with the decoupled representation. These results are shown in
Table 1, where it can be observed that the rhythmic feature is the discordant
one, as its perplexity is much further from the whole model than when using
just pitch intervals.

Table 1. Mean and standard deviations of the perplexity obtained by the model and
the first movement of the string quartet KV 158, using intervals only, durations only,
and both combined.

3−grams
Intervals Duration ratios Intervals and duration ratios

Model 10.6 ± 1.9 3.8 ± 1.3 7.4 ± 1.8
KV 158-01 14.2 ± 0.4 10.0 ± 0.6 15.9 ± 0.6

We have additionally done a ranking of the rhythmic 3-grams generated from
this piece. We have found that, besides the expected most frequent 3-gram (Z Z
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Z, representing three consecutive notes of the same duration), the two other most
frequent 3-grams in this movement belong to this rhythmic motif, whereas they
are extremely rare in the whole model. These frequencies are shown in Table 2
and allow us to state that the peculiarity of this piece lies in the rhythm, which
is not a usual rhythm in Mozart’s language.

Table 2. Frecuencies for the most seen rhythmic 3-grams in the 1st movement of
Mozart’s quartet KV 158 and for the same 3-grams in the whole Mozart corpus.

Frequency (%)

3-gram KV 158-01 All

Z Z Z 9.9 37.1
Z Z Y 6.8 1.8
C Z Z 6.5 0.1

3.2 Mozart’s string quartet KV 168, 4th movement

On the other hand, when comparing every piece against every model, we can
see that some of the classification decisions are taken by a very small difference
between the models. We wonder whether these decisions should actually be taken
into account, or whether they should be addressed in a somehow different way.
As an example, we show the results of the fourth movement of Mozart’s string
quartet KV 168 (Figure 3) against all the five composers’ models.

Mozart Haydn Händel Telemann Bach
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Fig. 3. Comparison of 4th movement from Mozart’s quartet KV 168 against every
model, using pitch and duration independent representations and n = 3. Model per-
plexities are the averages and deviations for all the Mozart pieces in the dataset.

Proceedings MML 2017, 6.10.2017, Barcelona, Spain 35



This movement is actually a fugue, and this might be the reason why the
system founds itself in trouble to distinguish one of the composers as the actual
author. This is probably due to, although the fugue was a musical form spe-
cially preferred in the Baroque period, other composers from different periods
have used it as well in their compositions. In this case, the system succeeds in
recognizing a style which is closer to the Baroque period than to Mozart’s and
Haydn’s Classical style, assigning a lower perplexity to these composers, but fails
in selecting its actual author.

4 Conclusions and future work

From the results shown in this paper, we think that it is desirable going beyond
the simple statistical analysis when trying to classify musical compositions in
the style of the studied composers. We have realized that the classification of
some of the pieces is done with a very little difference from one model to another,
and also that there are some pieces that do not fit well in the model built from
their author. This shows that it is quite difficult to build a model that is general
enough to capture the style of a composer, while being able to identify the
subtleties of each individual piece at the same time.

However, a musical analysis on a few pieces has shown that the numerical
results for them agree with these analysis indeed, so we think that our system
is still able to capture some of the musical features characterizing music styles.
Nevertheless, deeper research with other musical compositions needs to be done
in this way, in order to study whether these results might be generalized and, if
so, to open a discussion about what to do with this kind of pieces when doing
classification tasks. Another open question to be addressed is whether or not
these models are able to capture higher level stylistic traits, such as musical
form, in other to answer some issues that have arised during this study.
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Abstract. This paper explores the possibility of predicting a music
artist’s future popularity, quantified by how often their tracks are listened
to in the past, on a daily basis. Using the LFM-1b dataset of listening
histories by Last.fm users, we investigated three regression techniques to
predict the amount of listening events an artist will generate per day.
To this end, we adopt linear regression, support vector machines, and
neural networks to create, analyze, and optimize predictions, which we
finally visualize for easy exploration.
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1 Introduction

How will a music artist’s popularity evolve over the next month? This question
lays at the basis for our work. The creation of accurate predictions of an artist’s
future popularity offers a multitude of possible applications, such as in music
recommendation systems or as a decision guidance for investors or music labels.
To the best of our knowledge, such popularity prediction experiments in the
music domain have only been conducted on rather small datasets, exploiting only
content features or peer-to-peer networks, the latter having faced a substantial
decrease in usage during the last few years, due to the emergence of streaming
services like Spotify, Apple Music, or Last.fm. In this paper, in contrast, we
exploit a large-scale dataset (LFM-1b) of more than a billion user-generated
listening events. Our goal was the generation of predictions and the subsequent
continuous optimization of the predictive algorithms to increase accuracy. In
this comparative study, we relate the results achieved with different regression
approaches to determine which method generates the most accurate predictions.

2 Related Work

Similar work has already been undertaken by various researchers. Staying within
the topic of music, one highly relevant work is [8], in which Pachet and Roy use
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content-based features for popularity prediction of music items, with limited
success though. Dhanaraj et al. [3] try to predict hit songs based on extracted
acoustic and lyrical information. They ultimately conclude that their lyrics-based
features produced slightly more accurate results. Similarly, Herremans et al. [2]
explore the prediction of dance hit songs based on several different classifiers
and a database of dance hit songs from 1985 to 2013. Furthermore, Ni et al. [7]
investigate the prediction of hit songs based on the UK top 40 charts of the
last 50 years, with the aim to distinguish songs with their peak positions within
the top 5 from songs which peak in the top 30 to 40. Using web sources in-
stead of audio, Schedl et al. [10] determine country-specific popularity of music
artists. They investigate search engine playcounts, popularity derived from Twit-
ter, from shared folders in the peer-to-peer network Gnutella, and from Last.fm
playcounts. Their conclusion is that these sources are largely inhomogeneous and
yield to different popularity scores. Koenigstein and Shavitt [6] try to forecast
the Billboard charts based on search queries issued within Gnutella. They show
that a songs popularity in the network highly correlates with its ranking in the
Billboard charts.

In the multimedia domain, Bandari et al. [1] predict the popularity of news
items prior to their release to the public, achieving an overall accuracy of 84%.
Yu et al. [11] explore the effect that Twitter contributions have on the amount of
views a YouTube video receives over a certain time span, differentiating between
sudden increases in viewcount, named “Jumps”, and the initial viewcount a video
receives shortly after its upload, named “Early”.

3 Experiments and Results

3.1 Dataset

The LFM-1b dataset [9] used in our work contains information on users, artists,
tracks, and listening events. The dataset contains more than 1 billion listening
events for more than 3 million individual artists. Listening events, which consti-
tute the main building block for our experiments, are defined by a specific date
and time and the corresponding information about track and user. We consid-
ered in our experiments the top 100 artists according to number of total listening
events to ensure a sufficient amount of data.

Before we were able to start working on the actual predictions, we first had
to aggregate the LFM-1b data and transfer it into a suitable database structure
(using SQLite1) as we were interested in the total number of listening events per
artist per day, rather than the raw data contained in the LFM-1b dataset’s [9]
listening events file.

3.2 Experimental Setup

To generate a prediction, we use a certain number of past days, which can
be specified individually for each experiment. Each value in the feature vector

1 https://www.sqlite.org
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constitutes the number of listening events the specified artist accumulated that
day, i.e., over all the artist’s tracks. Based on these feature vectors, the goal of
the algorithm is to calculate a single value representing the amount of listening
events the artist would receive a certain number of days after the last known
value. More formally, we use a time series LEa

t0···tN of listening events for artist
a, starting at day 0 up to day N , where N is the same number for all artists.
We then train different regressors to predict LEa

tN+1···tN+M
, where M is the time

period to forecast, in days.

We investigate variants of linear regression, support vector machines, and
neural networks, as provided in the scikit-learn2 Python package, for our regres-
sion task and measure accuracy in terms of the R2 metric.

Linear Regression As a fairly simple but efficient algorithm, linear regression
represented our first approach to create predictions. We were not expecting this
method to generate accurate results, instead viewing it as a first step towards
further optimization. We did, however, quickly realize that with fairly little op-
timization, the results achieved with linear regression already appeared to be
promisingly accurate, as fairly early tests already achieved an average R2 value
of 84%.

Support Vector Machines We next investigated epsilon-support vector re-
gression [4], which is based on a more sophisticated methodology than linear
regression and allows for a more complex range of options concerning the opti-
mization of the algorithm to the specific task at hand. In typical classification
problems, support vector machines perform a non-linear transformation on the
data, allowing the model to separate the classes more easily. In regression use-
cases, such as ours, a line of best fit is calculated instead and the parameter
ε is introduced as a tolerance range, hence the name epsilon-support vector
regression. The algorithm’s behavior is strongly dependent on the specified ker-
nel, which is represented by different mathematical functions. For our purposes,
we assessed linear, radial basis function (rbf), and polynomial kernels (poly).
Overall, using the linear kernel yielded similar results to linear regression, with
average R2 scores of around 83%. When using the kernels rbf and poly, further
fine-tuning can be made via the parameters ε, C, and γ. Epsilon determines the
size of the tolerance range for data that significantly deviates from the calculated
model. The tolerance penalty C specifies how harsh data outside this tolerance
range should be penalized. Finally, γ determines the intensity of the influence a
single data point can have on the overall model. We continuously tweaked these
parameters by hand, constantly analyzing the results and comparing them to
previously achieved ones. We achieved the best results when using the rbf kernel
with γ = 0.00001, ε = 1.0, and C = 625, which accomplished an average R2

value of over 86%.

2 http://scikit-learn.org
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Fig. 1. Prediction over 90 days for Metallica using linear regression, December 2010

Neural Networks Artificial neural networks are an advanced machine learn-
ing methodology that tries to solve problems based on a layered structure of
nodes. We used feed-forward neural networks [5], where each node of a layer is
connected to each node in the layer above and below it. As the main purpose
of our work with neural networks was getting the most accurate predictions
based on a specified number of listening events, the most essential part was the
configuration of the network itself. We used a sliding window approach to train
our neural network where the window size is 120 days. To determined the best
solver, we compared the accuracy of all solvers provided by scikit-learn (sgd,
adam, lbfgs) and eventually determined that the lbfgs solver was best suited for
the amount of data available in our dataset.The second configuration step was to
choose the activation function, for which we used a linear model due to accuracy
and consistency of the achieved results. Lastly, we determined the amount of
layers and nodes. We chose one hidden layer and increased the number of nodes
until further change produced no noticeable differences in results and ended up
with 120 input nodes, 16 hidden nodes and one output node. Our best results
achieved with neural networks in terms of the R2 score were around 91%.

3.3 Results and Discussion

As illustrated in Figures 1 and 2 for Metallica, using respectively linear regres-
sion and neural networks, the achieved results all appear to be fairly plausible
predictions, regardless of the applied algorithm. Red areas represent the true evo-
lution of listening events, blue areas the predictions. Naturally, the longer the
predicted time span, the less accurate the achieved results are. Additionally, the
amount of available data is a strong limiting factor, meaning that predictions for
a well-known artist are usually significantly more accurate than those generated
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Fig. 2. Prediction over 90 days for Metallica using neural networks, December 2010

for an underground band. Achieved results did, however, also strongly depend
on the chosen time span. Approaching average R2 scores of slightly over 93%,
some of our best results using linear regression were attained with The Beatles
in 2012. Overall, we achieved the highest R2 scores for artists like The Beatles,
Metallica, and Pink Floyd, which we ascribe to the fact that these artists were
already well established and fairly popular throughout the time span our data
covered. For these artists, all of our applied methods reached average R2 values
of 89% to 94%, with the best scoring predictions lying within a time span of
2012 to 2014. Naturally, we found that artists which exhibit significant jumps
or spikes in popularity were much harder to create accurate predictions for. For
example, when trying to predict the popularity of Daft Punk in 2013, average R2

scores of our support vector machine algorithm dropped to around 43%, while
linear regression scores sank to 39%.

4 Conclusions

In conclusion, we find that all three regression techniques generate surprisingly
accurate results when predicting well established artists, e.g., The Beatles (R2 of
89% using linear regression) or Metallica (94% using support vector machines).
Each technique does, however, possess certain advantages and disadvantages.
Linear regression is fairly simple and quick to implement and understand and
exceeded our expectations in regards to its accuracy, but is most likely still
not the best suited option for real life applications of such problems due to its
simplicity. Support vector machines offered slightly higher accuracy and more
consistency over artists than linear regression, but performance quickly became a
limiting factor when using a larger number of features or predicting a longer time
span. Neural networks, on the other hand, probably constitute the best option
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in our eyes as they allow to use a large number of features (preceding days),
which boosted the achieved accuracy, and were also able to generate adequate
predictions further into the future.

For future work, we contemplate many ways in which the predictive algo-
rithms could be improved. One of the most obvious and probably also most
effective approaches would be to take recent album releases into account when
creating predictions. Another idea would be observing social media activity per-
taining to specific artists.
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Abstract. Training deep learning source separation methods involves
computationally intensive procedures relying on large multi-track datasets.
In this paper we use data augmentation to improve hip hop source sepa-
ration using small training datasets. We analyze different training strate-
gies and data augmentation techniques with respect to their generaliza-
tion capabilities. Moreover, we propose a hip hop multi-track dataset
and we implemented a web demo to demonstrate our use scenario. The
evaluation is done on a part of the dataset and hip-hop songs from an
external dataset.

Keywords: Music Source Separation, Deep Learning, Hip Hop

1 Introduction

Audio Source Separation involves recovering individual components from an au-
dio mixture [8]. This task is related to auditory scene analysis, however it is
difficult for the current algorithms to match human ability of segregating audio
streams. Matrix decomposition techniques such as Non-Negative Matrix Fac-
torization (NMF) [3], were traditionally used for audio source separation. NMF
is particularly popular in this field because of its additive reconstruction prop-
erties. However, the NMF iterative procedure is computationally expensive in
contrast to newer approaches using deep learning [2]. Furthermore, frameworks
as [3] rely on a pitch detection stage and assume a voiced source.

Deep Neural Networks model source separation as a regression problem, tak-
ing as an input time-frequency representations such as Short-term Fourier Trans-
form (STFT) magnitude spectrograms, and estimating a continuous output, the
magnitude spectrograms for the sources [2,5,7]. Because the estimation assumes
a single feed-forward pass through the network, deep learning frameworks are
less computationally intensive than NMF [2]. However, deep learning models
are expensive to train and require large datasets with isolated instruments [7],
which are difficult to obtain. Furthermore, data driven methods can often overfit
and fail for a particular test case, which might represent a different problem in
itself. To that extent, data augmentation [1] is a regularization technique that
increases the robustness of an already trained model and boosts its performance
on unseen data.

Proceedings MML 2017, 6.10.2017, Barcelona, Spain 43



In this paper we study the use of data augmentation to retrain a general pur-
pose music source separation model for hip hop music, on very small datasets. We
are interested in assessing the generalization capabilities of the models trained
with such data.

For the experiments we use the Convolutional Neural Network (CNN) au-
toencoder [1] in [2] which separates pop-rock music with low latency. The baseline
architecture comprises an encoding and a decoding phase. At the encoding phase
we have a vertical convolution which models timbre characteristics, a horizontal
convolution which models temporal evolution, and a dense layer with a low num-
ber of units which acts as a bottleneck. The decoding phase assumes performing
the inverse operations of the layers in the reverse order, namely another dense
layer and two deconvolutions.

We follow the research reproducibility principles and publish the dataset,
code, and a web demo.

The remainder of this paper is structured as follows. In Section 2 we present
the use scenario, followed by the proposed dataset in Section 3. In Section 4 we
evaluate the use scenario and discuss the results. The conclusions are presented
in Section 5.

2 Use scenario

HipHop music is an interesting scenario for source separation. The most notice-
able characteristic is that the voice is not sung. Thus, pitch-based methods [3]
would not work properly to extract the vocals. Furthermore, the drums and the
bass can be acoustic, synthesized or sampled from vinyl records, making the
timbre variability of the sources very high.

Our use scenario is remixing or upmixing recordings [4] in the same pro-
duction style, where the instrumentals are created by a single producer and
the voices come from different musicians. Furthermore, we are interested in live
remixing, where latency plays a crucial role in the overall performance, and it
is advantageous to use a deep learning system. Such a system can be used by a
music producer or DJ to manipulate songs within a certain genre or production
style to play them live.

3 Dataset

3.1 Proposed dataset

We propose a compilation of Hip Hop songs, referred to as HHDS 1, which can
be used to train a neural network. The structure of HHDS follows the convention
of DSD100 2 (Demixing Secrets Dataset). HHDS contains the separated tracks
for the categories of bass, drums, vocals and others in monophonic WAV files

1 HHDS, on Zenodo: http://doi.org/10.5281/zenodo.823037
2 Demixing Secrets Dataset (DSD100), SiSEC2016: http://liutkus.net/DSD100.zip
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with a sampling rate of 44100Hz. The mixture is calculated by normalizing the
sum of the tracks. The main difference with respect to DSD100 is that in HHDS
there are HipHop songs only, instead of many different genres. The total number
of songs is 18, from which 13 are used for training and 5 are used for evaluation.
The songs are mixed by one producer and contain vocals in Spanish from 12
different musicians to maximize timbre diversity for voice. More details about
the dataset can be found at the repository page.

3.2 Data Augmentation techniques

A deep learning model can become more robust through data augmentation
techniques which create more training instances [6]. To that extent, we choose
transformations which are relevant for source separation and are applied to the
audio signal, rather than the STFT magnitude spectrogram. Thus, similarly
to [6], we discard other popular transformations such as pitch shifting and we
analyze the following augmentation techniques:

a) Instrument Augmentation (IA) [7]. More renditions of the same song can
be created by muting one of the instrument tracks. This transformation is useful
modeling hip hop cases, e.g. an instrument does not play in certain sections.

b) Mix Augmentation (MA) [7]. We sum instrument tracks from differ-
ent songs to create a new mix. The tracks are combined and picked randomly.
This transformation de-correlates the harmonic relation between the instruments
within a mix, however it provides more training examples of different timbre
combinations.

c) Circular Shift (CS) [5, 6]. The audio signals corresponding to instrument
tracks are shifted between each other with a fixed number of time frames. With
this transformation we introduce small temporal deviations of 0.1, 0.2 seconds
which make the network more robust to various time patterns. While temporal
alignment of the instrument tracks is slightly modified, the structure of the song
does not change.

4 Evaluation

4.1 Experimental setup

a) Parameters To train the network, the spectrograms are passed through it
iteratively for 40 epochs using the parameters of the baseline method [2] with
mini-batch stochastic gradient descent.

b) Evaluation metrics We use the objective measures proposed in [8]: Source
to Distortion Ratio (SDR) as a global quality measure, Source to Interference
Ratio (SIR) related to the interferences from other sources, Source to Artifacts
Ratio (SAR) related to the presence of artifacts. All measures are expressed in
decibels (dB).
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4.2 Experiments

The experiments evaluate 8 models, described in Table 1. A generic model
trained with DSD100 [2] is used as a reference. 2 models are retrained from
the reference using HHDS, and 5 models are trained with HHDS and data aug-
mentation techniques.

Table 1. Models generated during the training phases.

DSD Trained with DSD100 songs only, used as a reference.

DSD HH Retrained from DSD100 with HHDS in a new training.

DSD HH 2 Retrained from DSD100 with HHDS in a new training, with a
lower learning rate for 10 epochs.

HH Trained with HHDS songs only, used as a specialized case.

HH COMBI Trained with HHDS and all the Augmentations combined.

HH CS Trained with HHDS and Circular Shift Augmentation.

HH IA Trained with HHDS and Instrument Augmentation.

HH MA Trained with HHDS and Mix Augmentation.

4.3 Results

Fig. 1. Results in terms of SDR, SIR, SAR for HHDS Test (left) and the HipHop songs
from DSD100 (right).

We evaluate the models for two different contexts involving different produc-
tion styles, first, on the test set from HHDS (Figure 1 left), and, second, on the
3 songs labeled as HipHop from test set of DSD100 (Figure 1 right) which are
not used to train any of the models. In the corresponding figures, error bars are
drawn for a confidence interval of 95%. Note that the songs from HHDS comprise
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one production style, with mostly synthetic drums, while the ones in DSD100
have mostly acoustic drums and contain a more variety of production styles.

As seen in Figure 1 left, the generic model trained on the DSD set, DSD,
has lower performance than the models trained on HHDS dataset comprising
tracks with similar production style. As expected, the generic model performs
better on the DSD100 hip hop set (Figure 1 right) because it models better the
acoustic drums and it was trained with larger variety of timbres.

Training the model from scratch on HHDS, HH, improved 0.7dB SDR over
the generic model, DSD, while decreasing 3dB over the 3 DSD100 songs which
are created in a different production style. Further improvements of 3dB over
the generic model and 1.5dB over the HH, are obtained with Circular Shift (CS)
augmentation in HH CS. This augmentation makes the model more robust for
unseen songs the same production style (Figure 1 left), however not for the 3
songs in DSD100 (Figure 1 right). This type of augmentation is helpful in our
use scenario: remixing of recordings in the same production style.

The other two augmentation techniques do not improve the results on HHDS
dataset, however the Mix Augmentation model (HH MA) obtained more robust
performance on the DSD100 songs: 2dB higher. Thus, creating more combina-
tions between different not correlated tracks, keeps the performance stable on
the target context and makes it more robust on songs from different produc-
tion styles. The Instrument Augmentation model (HH IA) did not improve the
baseline method because the combinations created were not realistic.

The combination of all the augmentation techniques in HH COMBI did not
result in a significant improvement in any of the two contexts. It obtained 0.5dB
lower performance respect to HHDS, achieving 0.2dB over the baseline method
for the same production style. Similarly to HH IA, the combinations generated
are not realistic.

Surprisingly, DSD HH, which involved initializing the model with weights
from DSD, and then re-training with HHDS, did not improve over the generic
model and over the model trained from scratch. Also in DSD HH 2, trained with
10 epochs and a lower learning rate, the improvement is not significant. Further
experiments are needed to assess these problems.

5 Conclusions

We have presented a source separation scenario that is well suited for the use
of small datasets under the genre-specific assumption. A producer or DJ can
use this system to train a model with very few songs and separate songs of the
same style. From the experiments it can be extracted that the context-specific
methods outperform the general purpose one for test cases similar to the training
examples. For songs that differ from the training data the performance can
be improved with data augmentation, achieving a more general representation.
Thus, we found that there is a trade-off between the specialization of model and
its performance under unknown test data.
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Future research on this topic can be focused on the development of applica-
tions such as upmixing or remixing, as well as exploring more data augmentation
techniques. It would also be interesting to expand HHDS with songs from other
producers.

The reader is encouraged to check a web-based demo of this paper3.
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Abstract. A model is proposed for predicting expressive variations in
dynamics for violin performances with the purpose of facilitating expres-
sive performance learning by students. The model uses phrases rather
than single notes as units of analysis in a lazy learning approach: each
phrase in a new score is matched to phrases from expressive performances
by experts, adapting the experts’ transformations to render an expressive
performance of the new score. In preliminary tests, the model approxi-
mates the dynamics of actual performances better than an unexpressive
baseline model whenever the reference dataset contains melodies similar
to those being predicted.

Keywords: expressive music performance, machine learning, music in-
formation retrieval

1 Introduction

Expression in music can be understood as the variations in timing, dynamics,
pitch, timbre, and other features introduced by musicians as they play. Teaching
musical expression traditionally relies on the continuous feedback that a face–to–
face setting can provide [1]. When practicing an instrument on one’s own, the
absence of expert supervision makes acquiring this skill much harder, leading
to frustration and high abandonment rates among students [2,3]. If, however,
the information about how to play expressively could be generalized by a model
based on some large set of recordings by professional musicians, a system could be
devised that would be able to provide real–time feedback to students practicing
any piece, even if no sample performance of it exists.

In this paper we propose a model for predicting dynamics for violin perfor-
mances which mimics the process by which a musician would choose to interpret
a melody based on their memory of a similar one. Our aim is to determine
whether an automatic recognition of phrasing and melodic content present in
a score can be used for selecting adequate examples of performance, and, if so,
whether having these examples is enough to generate a plausible rendition of a
piece.
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2 Background

Several models of musical expression have been proposed for various instruments
and purposes [4]. We highlight the most relevant comparisons. The DISTALL
system [5], though designed for piano, can also produce dynamics predictions
based on phrase–level analysis of performances, though they define phrasing hi-
erarchically whereas we only focus on short motivs. Also, since the musicological
analysis of scores is reportedly manual, it does not fit our requirement for being
used in an expressive tutor system. Ramirez et al. [6] design a model for jazz sax-
ophone that produces performance rules based on data via genetic algorithms.
Besides focusing on note–level instead of phrase–level predictions, their approach
is different by being rooted in classification (e.g. piano, mezzo–forte, fortissimo),
with numerical values for synthesizing audio resulting from an a posteriori ap-
proximation. These same remarks apply to the model by Giraldo and Ramirez
[7] for jazz guitar. Lastly, the basis–functions approach by Grachten and Widmer
[8] relies on expressive markings in scores and their interpretation, whereas our
model does not require annotated scores and applies very little musicological
knowledge. Furthermore, all the discussed models assume a previous training
step often very time–consuming before producing performances, whereas we are
interested in taking a lazy learning approach that can be used to our favor for
selecting the most relevant references for each performance prediction.

3 Materials and Methods

All data used in development come from recordings which were made as part
of experiments on ensemble expressive performance [9,10]. A dynamics curve
was calculated from the audio extracted from the pickup of the first violin in a
performance of the fourth movement of Beethoven’s String Quartet no. 4, Op.
18, purposely exaggerated in its expressiveness.

≈ ?

subdivide reference 
performances 
into phrases

subdivide new 
score into phrases

Find most similar 
references for new 

phrases

obtain expression 
descriptors from 

audio

Combine expression 
descriptors of similar 
phrases to make up 

predictions

Fig. 1. Diagram of the steps taken to predict the dynamics for a new score.
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The method for generating a prediction is depicted in figure 1. First, the score
of the target piece is automatically segmented into phrases in a top–down ap-
proach based on the method by Cambouropoulos [11]. Then, ratings of melodic
similarity are computed between each phrase from the score and every phrase
in the database of references. A dynamic time warping algorithm is used for
determining the degree of similarity between two phrases as proposed by Stam-
men and Pennycook [12]. The warping cost between phrases is interpreted as
the distance between them, and the cost function takes pitch contour and note
duration ratios into consideration. Predicted dynamics for each phrase may then
be computed based on its closest matches.

Fig. 2. Performed dynamics for a section of a piece and some key measurements.

Figure 2 represents a dynamics curve plot note by note where the dynamics
at each note n is D(n). Dynamics values are obtained as the logarithm of RMS
values of audio samples within the (manually segmented) duration of each note,
adjusted to the 0 – 127 scale commonly applied to MIDI velocities. Between
dashed lines is the section of a particular phrase in that piece. L is the mean
level of the piece, whereas ` is the mean level of the phrase. The dynamic range is
given by R for the piece and r for the phrase and we use the standard deviation
of loudness values as their measure. Considering that pieces may be performed
at widely different mean levels and dynamic ranges, if we intend to use phrases
from multiple pieces as references for prediction it makes sense to measure their
values relative to L and R and allow these to be set by the user for the predicted
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rendition. Therefore, the characterization of each phrase p in our model is given
by three components:

αp =
`p − L
R

βp =
rp
R

Γp(n) =
D(n)− `p

rp

Where αp represents the overall salience of p in relation to the piece, βp is the
relative dynamic range of the phrase, and Γp represents the relative dynamics
contour, that is, a function which describes how each note in a phrase contributes
to its dynamics. Consequently, the dynamics at each note k ∈ p can always be
written as:

D(k) = L+R · (αp + βp · Γp(k))

These three components are measured for each reference phrase and make
up the target variables for our learning step. By predicting α, β and Γ for all
phrases of a target score, the above equation gives us the output prediction for
freely chosen values of L and R.

4 Results

A preliminary analysis was conducted using a leave–one–phrase–out setting on
the data from the Beethoven recording. Figure 3 shows the distributions of mean
absolute error for each note using k–NN (k = 1), k–NN (k = 1) predicting Γ as a
quadratic polynomial, and k–NN (k = 3). For this last case, target variables take
the mean values of the three nearest neighbors. The baseline is a mechanical,
unexpressive prediction. From the plot it is visible that the quadratic polynomial
was effective as an aproximation, and that k–NN (k = 3) is successful in reducing
the instances with larger error values while maintaining mean absolute error
MAE = 19.6 (15.44% of full–scale), which is lower than the baseline (p = 1.56×
10−6 for one–sided t–test). Though it performs better than baseline, it should
be noted that this is an advantageous case for the model, since the available
reference phrases were part of the same performance.

In order to validate the hypothesis that phrases rated as melodically similar
share similar dynamic profiles, we split the phrases predicted using k–NN (k = 1)
in half, separating phrases with closest nearest neighbors in the training set from
phrases with farthest ones. The mean absolute error in dynamics prediction for
the phrases with closest neighbors is 8.83% of full–scale on average, whereas
phrases with farthest neighbors show 15.77 %FS error on average, meaning pre-
dictions were more accurate for phrases which had instances in training data
with a higher melodic similarity to them. This is an indication that the adopted
measure of melodic similarity can be used as a predictor for performance dynam-
ics, and also that given a larger number of performance examples, the model has
a good margin for improving the quality of its predictions, since a wider range
of melodies would be available as references.
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Fig. 3. Boxplot of the prediction errors in a leave–a–phrase–out approach vs. baseline.

5 Conclusions

We have devised a model for expressive dynamics prediction of solo violin per-
formances based solely on the adaptation of performances of similar melodies.
Both the proposed approach to characterizing expressive deviations in dynamics
and the adopted measure of melodic similarity have been evaluated favourably,
though with a limited dataset. Given the model’s instance–based nature and the
generality of its musicological assumptions, it should also be applicable to perfor-
mances of other instruments. Furthermore, our data treatment for interpreting
the contributions of each phrase to the expression of a musical piece may benefit
other models as well. As previous models have shown, including other musical
aspects deducible from the scores such as metrical strength and harmonic con-
tent should improve the quality of results. Also, an indirect dependency exists
between generated predictions and phrasing boundaries, so including multiple
phrasing interpretations could be an advantageous trait. As a logical next step,
the authors are now preparing a perceptual evaluation of the predictions made
by the model to verify if they sound pleasant to listeners.
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Abstract. Descriptive pattern mining supports corpus-level music anal-
ysis by identifying interesting patterns in music repertoires. Analyses
using global-feature representations usually employ a supervised mining
approach, discovering patterns which distinguish between a corpus and
an empirical background. Supervised techniques thus rely on availability
of a background corpus. This paper presents a method for unsupervised
discovery of global-feature patterns, without a background corpus, eval-
uating pattern candidates against a statistical background model. The
method is illustrated in a case study on musical traits of Native American
music.
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1 Introduction

In the computational analysis of symbolic music corpora, inter-song patterns cap-
ture musical characteristics which recur across several songs in a corpus [4]. Se-
quential patterns describe sequences of event-level features, while global-feature
patterns represent sets of song-level features. Patterns are considered interesting
if they occur in a corpus more frequently than expected. For sequential patterns,
expected pattern frequencies have been calculated from empirical probabilities
according to an explicit anti-corpus [4, 2] or from analytic probabilities according
to a statistical background model [6, 3]. Discovery of global-feature patterns, on
the other hand, has solely evaluated patterns using empirical probabilities, thus
requiring a background or anti-corpus [11]. This paper presents a method for
discovering interesting global-feature patterns based on analytic probabilities.
The method is applied to a large collection of Native American songs.

2 Statistically interesting global-feature patterns

The pattern discovery method presented in this paper builds on techniques devel-
oped in the well-established field of itemset mining [9]. While traditional itemset
mining is mainly concerned with discovering frequent itemsets, the method de-
veloped here evaluates patterns primarily by a statistical interest criterion.
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A global-feature pattern is a set of features: P = {f1, ..., fk}. Each feature fi
represents an attribute–value pair, e.g. metreChange : yes. The feature set can be
interpreted as logical conjunction: a song satisfies a pattern if all features in the
set are true for the song. The number of songs satisfying the pattern gives the
support of the pattern. To assess the interest I of a pattern P , the observed
support of the pattern O(P ) is compared against its expected support E(P ):

I(P ) =
O(P )

E(P )
(1)

The expected support can be computed from an analytic background model as

E(P ) = N ×
k∏

i=1

p(fi) (2)

where N is the number of songs in the corpus and p(fi) = O(fi)/N is the prob-
ability of feature fi. That is, E(P ) measures the pattern support which would
be expected if the features in the set were independent of each other. A pattern
is considered interesting if I(P ) > 1: if the features of the set co-occur more
frequently than expected under an assumption of independence [1]. To avoid
spurious patterns, additionally a minimum support threshold is applied; a pat-
tern whose support is above the minimum support threshold is called a frequent
pattern. Finally, to reduce redundancy among discovered patterns, the current
study focuses on maximally general interesting patterns, i.e. those interesting
patterns which do not contain any subsets that are also interesting.

The search space of global-feature sets in a music corpus is exhaustively rep-
resented by a set-enumeration tree (e.g. [15]). The number of candidate patterns
to be tested can be restricted by employing several pruning strategies. (1) Se-
mantic pruning : features derived from the same attribute cannot co-occur in
a song, and thus only sets of features derived from different attributes need
to be evaluated [15]. (2) Support-based pruning : any superset of an infrequent
global-feature set is also infrequent, and thus a branch of the search tree can be
terminated when an infrequent pattern is reached. (3) Interest-based pruning :
a pattern is a maximally general interesting pattern if none of its subsets are
interesting, and thus a branch of the search tree can be pruned if at least one
subset of the candidate is interesting [4].

3 Data and Results

Discovery of interesting global-feature patterns is applied to the Densmore col-
lection of Native American music: songs collected, transcribed and published
by Frances Densmore from the 1900s to the late 1950s [14]. Native American
music has been studied extensively by ethnomusicologists; in his seminal survey
of North-American native music, Bruno Nettl identified features shared by na-
tive music repertoires across the continent [10]. Densmore’s and Nettl’s writings
provide a convenient reference to discuss global-feature patterns discovered by
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Attribute Description

tonality tonality according to third above keynote
firstReKey first tone relative to keynote
lastReKey last tone relative to keynote
lastReCompass last tone relative to compass of song
compass number of tones comprising compass of song
material tone material, scale
accidentals chromatic alterations of tones
structure relation between contiguous accented tones
firstDir direction of first melodic progression
firstMetr metrical position of first tone
initMetre metre of first measure
metreChange change of metre (measure-lengths)
rhythmUnit rhythmic unit(s) in song

Table 1. Music content attributes, based on analyses by Frances Densmore.

Number
of songs

Serial Nos. of songs

Songs containing
rhythmic unit 6 168, 172, 173, 174, 175, 180
no rhythmic unit 9 51, 52, 53, 169, 170, 176, 177, 178, 179

Total 15

Table 2. Densmore’s analysis of rhythmic units in a subset of songs [7, p. 308]. “For
the purpose of this analysis a rhythmic unit is defined as ‘a group of tones of various
lengths, comprising more than one count of a measure, occurring at least twice in a
song, and having an evident influence on the rhythm of the entire song.’ ” [7, p. 31]

computational data mining. In the current study, we consider 1770 Native Amer-
ican songs. Songs are represented by global features, which cover melodic aspects
of songs, tonal material and rhythmic-metric aspects (Table 1). These features
have been collated from Densmore’s own analyses [12] (see example in Table 2).
The resulting vocabulary consists of 52 features, derived from 13 attributes.

With a minimum support threshold of 70 songs (4% of the dataset) and an
interest threshold of 3 (thresholds successfully applied in previous work, [5]), the
discovery method returns 25 interesting patterns. Table 3 lists example patterns,
ranked by pattern interest. To assess the statistical significance of patterns, a
p-value was calculated according to the empirically approximated probability
distribution of pattern candidates (fitted to ≈171,000 patterns generated at a
minimum support of 1, minimum interest of 1.1 and including patterns which
are not maximally general). The p-value indicates the probability of finding the
number of observed patterns by chance alone and thus the risk of reporting false
positives.
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pattern E(P ) O(P ) I(P ) p-value

P1 {tonality : irregular, firstReKey : irregular} 4 79 22.00 2.7e-15
P2 {tonality : irregular, lastReKey : irregular} 4 79 20.21 1.3e-14
P3 {firstReKey : irregular, lastReKey : irregular} 4 79 19.60 2.3e-14
P4 {material : 4th 5toned scale, tonality : major,

firstReKey : triad within octave, lastReKey : fifth} 20 81 4.09 1.3e-5
P5 {firstReKey : keynote, firstDir : up,

lastReKey : keynote, lastReCompass : notlowest} 19 78 4.02 1.9e-5
P6 {firstReKey : triad above octave, firstDir : down,

lastReKey : keynote, lastReCompass : lowest} 42 136 3.28 5.9e-6
P7 {material : 2nd 5toned scale, tonality : minor,

lastReKey : keynote} 27 89 3.25 6.8e-5
P8 {material : 4th 5toned scale, tonality : major,

accidentals : no, lastReKey : fifth,
rhythmUnit : yes,metreChange : yes} 23 71 3.12 2.7e-4

Table 3. Interesting global-feature patterns discovered in the Densmore collection of
Native American songs. The listed patterns are statistically significant at α = 0.01
(p < 4.0e-4 with Bonferroni correction).

The results support several observations presented by Densmore and Nettl.
According to Densmore’s analyses, “with few exceptions, the sequence of tones
[in a melody] suggests a keynote” [8, p. 19], and the beginnings and endings
of songs show a preference for the keynote or the third, fifth, octave, tenth or
twelfth above the keynote [8, p. 21] (Table 3, patterns P4, P5, P6, P7 and P8).
The final keynotes “are mostly the lowest tones of the individual songs” [10, p. 49]
(pattern P6, but see pattern P5). Figure 1 shows a war song of the Chippewa
satisfying pattern P6: the song starts on the twelfth above the keynote, i.e. on
a triad tone above the octave, and moves downward until the final lowest tone
on the keynote; the melodic motion forms a terrace-type contour [10] of two-bar
phrases, each phrase starting on a tone lower or equal to the beginning of the
previous phrase and descending through a fifth or occasionally a sixth to reach
a plateau of repeated tones at the end of the phrase. In the songs surveyed by
Nettl, the “majority (ca. 60 per cent) of the scales are pentatonic” [10, p. 49];
in the Densmore corpus “the largest percentage [is] major in tonality and based
upon the upper partials of a fundamental” [8, p. 21] (pattern P4). Those songs
“whose tones are not referable to a keynote are classified [...] as irregular in
tonality” [8, p. 20]; in consequence the first and last tones cannot be related to a
keynote and are also described as irregular (patterns P1, P2 and P3). Similarly,
in some cases tonality and material features are semantically related: the fourth
five-toned scale is also known as major pentatonic scale (patterns P4 and P8),
and the second five-toned scale refers to the minor pentatonic scale (pattern
P7). Rhythmically, “North American Indian music is organized heterometrically;
isometric construction is very rare” [10, p. 50]: many songs thus contain changes
of metre. Figure 2 presents an example illustrating pattern P8: the song contains
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Fig. 1. War song of the Chippewa, illustrating pattern P6 of Table 3. Transcribed by
Frances Densmore, Densmore catalogue number 346 [7, p. 72].

Fig. 2. Song of the Sioux drum presentation ceremony (excerpt), illustrating pattern P8
of Table 3. Transcribed by Frances Densmore, Densmore catalogue number S.20 [7,
p. 178]. Brackets below the staffs indicate rhythmic units.

tones of the major pentatonic scale on G, ending on the fifth; the metre changes
between duple and triple time; interestingly, the rhythmic unit of the song occurs
in both duple- and triple-time measures [7, pp. 178-179].

4 Conclusions

One of the challenges in pattern discovery, especially in the context of exploratory
corpus analysis, is the identification of potentially interesting patterns. Exist-
ing work on global features tends to adopt a supervised mining approach [13],
extracting features which distinguish between different classes of songs. For de-
scribing characteristics of a corpus, these methods are thus restricted to situa-
tions where the corpus can be contrasted against an anti-corpus. Here we have
presented a method for discovering interesting global-feature patterns when no
anti-corpus is available, evaluating pattern candidates against an analytic sta-
tistical background. The method has been applied to the Densmore collection of
Native American songs, revealing global-feature patterns which capture ethno-
musicologically interesting traits of North-American Native music: the discov-
ered global-feature sets reflect both inherently musical relations between features
and statistically interesting feature combinations which, in the context of exist-
ing musicological observations, suggest style-specific musical characteristics of
the analysed music corpus.
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Abstract. Computational modelling of expressive music performance
has been widely studied in the past. While previous work in this area
has been mainly focused on classical piano music, there has been very
little work on guitar music, and such work has focused on monophonic
guitar playing. In this work, we present a machine learning approach
to automatically generate expressive performances from non expressive
music scores for polyphonic guitar. We treated guitar as an hexaphonic
instrument, obtaining a polyphonic transcription of performed musical
pieces. Features were extracted from the scores and performance actions
were calculated from the deviations of the score and the performance.
Machine learning techniques were used to train computational models to
predict the aforementioned performance actions. Qualitative and quanti-
tative evaluations of the models and the predicted pieces were performed.

Keywords: Machine learning, Computational models, Expressive music
performance, Hexaphonic guitar

1 Introduction

Computational modelling of expressive music performance deals with the study
of the deviations from the score that musicians introduce when performing a
musical piece (aka. Performance Actions (PAs)). Previous studies have mainly
focused on monophonic piano classical music. Some exceptions include guitar
and saxofone jazz music, in which only monophonic performances have been
considered.

In this work we present an approach to computationally model polyphonic
guitar performances from hexaphonic guitar recordings. The present approach
is an extension of previous work on monophonic expressive performance on jazz
guitar [1]. Hexaphonic guitar recordings of musical pieces recorded by a pro-
fessional guitarist, were obtained using a Roland GK-3 divided pickup. A new
set of features was defined aiming to capture not only the melodic (monophon-
ic/horizontal) context of the score, but also the harmonic (polyphonic/vertical)
context, depicting the harmonic progression or simultaneity between notes. Score
alignment using Dynamic Time Warping (DTW) was performed to extract PAs
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defined as Onset Deviation and Energy Ratio Later, machine learning models
were trained in order to predict the aforementioned PAs. Quantitavie evaluation
of the models was performed by means of accuracy measures over both train and
cross-validation schemes, as well as qualitative evaluation was assessed from per-
ceptual tests of the synthesized predicted pieces.

2 Background

In the past, music expression has been mostly studied in the context of classical
music, and most research focus on studying timing deviations (onset nuances [2])
and dynamics (energy [3]). There are several expert-based systems, such as the
director musices [4] by the KTH group, studying this field from different perspec-
tives. On the other hand, Machine-learning-based systems try to automatically
obtain the set of rules to predict the PAs. For an overview of theses methods
see Goebl 2005 [5]. Kirke et al [6] model polyphonic piano showing that multiple
polyphonic expressive actions can be found in human expressive performances.

Previous work on guitar expressive performance modelling has been done by
Giraldo et al. [1] and [7], who model ornamentation and PAs in monophonic
jazz guitar performances, using machine learning techniques. Bantula [8] mod-
els expressive performance for a jazz ensemble of guitar and piano extracting
features for chords such as density, weight or range.

3 Methodology

In Figure 1 we present a block diagram of the whole system, where four main
stages are depicted: data acquisition (guitar recording), audio to MIDI tran-
scription, feature extraction and model computation, and finally MIDI synthesis.
Expressive hexaphonic guitar recordings were obtained using the Roland GK-3
divided pick-up, which is able to separate the sound from each string [9].

The main output of this first stage was a new dataset consisting of hexaphonic
recordings recorded by a guitar player with different performance intentions. This
dataset consists of 3 audio recordings (one recording of Darn that dream a jazz
standard by Jimmy Van Heusen and Eddie De.Lange and two recordings of Suite
en la a classical piece by Manuel M. Ponce.) resulting in a total of 1414 recorded
notes and their corresponding music scores saved as XML files.

Transcription of each individual string was computed using the YIN [10] al-
gorithm and envelope-based note segmentation. The transcription of each string
was added into a single MIDI file by having each string in a different chan-
nel. After doing performance to score alignment with the original score and the
transcription of the expressive guitar performance using Dynamic Time Warping
(DTW), feature extraction and PAs computation was performed. As the player
was told to follow strictly the score, we can assume there are no structural differ-
ences between the music scores and the expressive music performance, so DTW
can be applied directly.
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Feature extraction was performed following an approach in which each note
was characterized by its nominal, neighbouring, and contextual properties. Nom-
inal descriptors refer to the intrinsic or intra-note properties of score notes.
Neighbouring descriptors or inter-note descriptors refer to the relations of the
note with its neighbouring or simultaneous notes. Contextual descriptors refer
to the context of the song in which the note appears in (e.g. chords, key, mode,
etc). A total amount of 34 features where extracted for each score note, plus
two PAs representing onset and energy deviation from each score note to its
matching performance note.

Several machine learning such as K-Nearest Neighbours, Decision Trees, Su-
pervector Machines and Artificial Neural Networks were applied to model Onset
Deviation (difference in time between performance onset of a note and its corre-
sponding onset in the score) and Energy Ratio (ratio between performance note
energy and its corresponding energy in the score).

Onset devi = Onset perfj −Onset scorei

Energy rati =
V elocity perfj
V elocity scorei

Also, feature selection has been computed and analyzed in order to retrieve
the subset of descriptors that better predict the studied PAs.

Fig. 1: Block diagram of the whole system.
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4 Results

The proposed approach was quantitatively evaluated by measuring Correlation
Coefficient (CC) obtained with the models studied, qualitatively evaluated by
asking listeners to compare predicted and real performances. In Figure 2 we
present the obtained CC for Onset Deviation and Energy Ratio. In red we show
the accuracy for the whole training dataset and in blue the results applying 10-
fold Cross-Validation (CV). The best accuracy (using CV) was obtained with
the set containing the first 5 best ranked features. In Table 1 we show the results
comparing different Machine Learning algorithms, both with CV and with the
whole training set. We present the CC for Energy Ratio and Onset Deviation for
the whole dataset, and using the best 5 features subset. The best results were
achieved with Decision Trees where the obtained subset of 5 features outperforms
the rest.
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Fig. 2: Accuracies on increasing the number of features. Algorithm
used: Decision Tree. Shown values correspond to Correlation Co-
efficients, in red for Train Dataset and in blue for 10 fold Cross-
Validation.

Predicted feature
D.Tree k1NN k2NN SVM ANN
cv/train cv/train cv/ train cv/train cv/train

Energy Ratio 0.35/0.51 0.22/1 0.26/0.78 0.21/0.33 0.23/0.63
Onset Deviation 0.67/0.77 0.30/1 0.36/0.81 0.39/0.45 0.29/0.67
Energy Ratio 5features 0.41/0.50 0.30/1 0.37/0.80 0.14/0.21 0.14/0.36
Onset Deviation 5features 0.69/0.72 0.38/1 0.61/0.82 0.30/0.31 0.44/0.43
Energy Ratio bestsubset 0.41/0.51 0.30/1 0.37/0.79 0.16/0.21 0.15/0.39
Onset Deviation bestsubset 0.69/0.73 0.37/1 0.58/0.82 0.30/0.32 0.48/0.48

Table 1: Results comparing different ML models (10 fold Cross-
Validation). Shown values correspond to Correlation Coefficients.
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For the qualitative survey, several synthesized pieces obtained by the models
were compared to both the score (dead pan synthesis) and the performed (syn-
thesized version) piece. Participants were asked to to guess how ”human” they
sounded by comparing among them through an on-line survey 1. Results from
15 participants (Figure 3) show that participants perceived the score more ”hu-
man” than the actual performance and predicted score. However, we obtained
similar results among the performed piece and the predicted one, which might
indicate that our models predictions are close to actual human performances.

Fig. 3: Results of the on-line survey with performance, predicted
and straight score synthesized midis.

5 Conclusions

In this work we have applied machine learning techniques in order to generate
models for musical expression in polyphonic guitar music, by training different
models for Onset Deviation and Energy Ratio. We treated polyphonic guitar
as an hexaphonic instrument by capturing and transcribing each string sepa-
rately. We extracted descriptors from the scores in terms of the melodic (Hor-
izontal) as well from the harmonic (Vertical) context. We computed PAs from
the aligned transcribed performance and the scores. We trained different mod-
els using machine learning techniques. Models were used to predict PAs that
later were applied to the scores to be synthesized. Feature selection analysis and
accuracy tests were performed to assess models performance. Perceptual tests
were conducted on the predicted pieces to rate how close they sound to a human

1 You can find the survey here: https://marcsiq2.github.io/
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performance. Results indicate that descriptors contain sufficient information to
generate our models able to predict performances close to human ones.
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Abstract. Converting sheet music scores into symbolic format is a nec-
essary step to use computational tools for music indexing and analysis.
We present an interactive framework in which user and computer col-
laborate to complete this transcription task. Our scenario assumes that
the user traces the information found in the image using an electronic
pen, and the system automatically recognizes the music symbols. The
multimodal nature of the signal (both pen strokes and source image)
can be used to improve the automatic recognition with Convolutional
Neural Networks. Our experiments show that exploiting adequately this
multimodality leads to a lower error rate.

1 Introduction

A large number of sheet music sources are available for musicological study.
An interesting option is to use computational tools for large-scale indexing and
analysis of the music. However, for this task to be feasible it is necessary to have
that content transcribed into a machine-readable format.

An efficient way of digitizing sheet music is to resort to automatic transcrip-
tion tools, usually referred to as Optical Music Recognition. These systems try
to automatically extract the meaningful information contained in a music docu-
ment from an image of its source. Nevertheless, these systems are still far from
solving the problem accurately [4], which finally makes this option be discarded
in most of the cases. Then, manual transcription is the only option left.

It is important to emphasize the role of the user as part of this process.
In such case, the user is the most valuable resource and the system must be
focused on minimizing the effort needed to complete the task [5]. It is, therefore,
necessary to develop tools that allow an intuitive and efficient interface. In spite
of several efforts to develop light and friendly software for music score edition,
the process is still considered tedious by most users.

We focus on the human-machine interaction for tasks related to music doc-
ument transcription. Conventional channels such as keyboard or mouse are not
easily applicable here, and so there is a need to introduce new ways of interac-
tion. Handwriting is a natural way of communication for humans, and so it would
be interesting to use this kind of interaction for music document transcription.
This can be done by means of electronic pen (e-pen) technologies.
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The scenario stated produces multimodal signals that can be used to improve
the recognition of the music symbols. In this work, we extend the first step pre-
sented in [1] by considering Convolutional Neural Networks for the multimodal
classification. Within this paradigm, several ways of combining the different
modalities produced are proposed, so that the performance can be improved
as far as possible.

2 Multimodal data

This section describes the nature of the multimodal data considered in this work.
The corpus of our case of study consists of 60 scores from a music archive dated
between centuries 16th to 18th, handwritten in mensural notation [2].

We assume a framework in which the user traces symbols on the score using
a digital surface, with the aim of automatically recognizing the music symbols.
The system therefore receives a multimodal signal: on the one hand, the piece
of the original image below the traced shape, referred to as offline modality
(Fig. 1); on the other hand, the rendered image of the sequence of 2D points
followed by the e-pen on the surface, referred to as online modality (Fig. 1).
The challenge here is how to achieve an adequate synergy that eventually allows
taking maximum advantage of all the modalities involved.

Fig. 1: Offline modality Fig. 2: Online modality

The considered dataset consists of 10 150 samples, each of which is repre-
sented by both offline and online modalities. Data was collected by five different
users tracing symbols on the aforementioned archive.

The samples are spread over 30 classes. The number of symbols of each class
is not balanced but it depicts the same distribution found in the documents.

2.1 Data overview

The distribution of symbols in the data set is shown in Fig. 3. In each cross-
validation folder, a similar number of representatives from each class is found.
For example, there are about 2600 samples of the Minima symbol, so in each
cross-validation set there are approximately 500 samples of it, and the same
applies to all classes. In any case, the maximum difference among the sizes of
the cross-validation folders for any class was of 21 samples.

Some of the most important symbols considered are shown in Table 1.
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Group Symbol

Note
Semibrevis Minima Col. Minima Semiminima

Rest
Longa Brevis Semibrevis Semiminima

Clef
C Clef G Clef F Clef (I) F Clef (II)

Signature
Major Minor Common Cut

Others
Flat Sharp Dot Custos

Table 1: A representative subset of the elementary symbols of the mensural
notation archive considered in this work.

Also it is important to point out that those who helped to create the on-line
mode data were writers with a basic knowledge of music, not specialists in early
music notations. They were not instructed in how the specific mensural symbols
should be interpreted.

The online sequences created by the different writers were shuffled in a single
set and the cross-validation folders were taken randomly from it, in such a way
that the different folds were not conditioned by a particular writing style.

3 Classification framework

We base our classification on Convolutional Neural Networks (CNN), given their
great success in a range of tasks related to computer vision [3]. These networks
take advantage of local filters, pooling, and many connected layers for learning
a data representation to successfully solve classification tasks.

The topology of these networks can be very varied. We selected four architec-
tures that are described below. We denote by Conv(k, c) a spatial convolutional
layer with kernel size k × k and number of filters c, with Rectifier Linear Unit
activation. Similarly, we denote byMaxPool(k) a max-pooling layer with kernel
size k × k. Dropout(r) is a dropout procedure with a ratio of dropped units r.
Then, our network architectures are defined sequentially as:

1. Conv(32,3)→ Conv(32, 3)→ MaxPool(2)→ Conv(32, 3)→ Conv(32, 3)→
MaxPool(2)

2. Conv(32, 3) → Conv (32, 3) → MaxPool(2) → Conv(32, 3) → Conv(32, 3)
→ MaxPool(2) → Dropout(0.1)
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Fig. 3: Distribution of the 10 150 samples among the 30 different classes con-
sidered. The most repeated symbols are Minima (2617), Col. Minima (1411),
Semibrevis (1103), Col. Semiminima (591), and Dot (773).

3. Conv(64, 3) → Conv (64, 3) → MaxPool(2) → Conv(32, 3) → Conv(32, 3)
→MaxPool(2)→ Conv(16, 3)→MaxPool(2)→ Conv(16, 3)→MaxPool(2)

4. Conv(64, 3) → Conv (64, 3) → MaxPool(2) → Conv(32, 3) → Conv(32, 3)
→MaxPool(2)→ Conv(16, 3)→MaxPool(2)→ Conv(16, 3)→MaxPool(2)
→ Dropout(0.1)

In all cases, a fully connected layer with 30 units and SoftMax activation
is placed on top of the CNN in order to obtain a probability for each of the
considered categories. Also, the input layers always expect images of an equal
size of 36× 36.

3.1 Multimodal classification

There might be several multimodal classification strategies depending on where
the modality fusion is actually performed. Next lines describe each of the strate-
gies considered.

Single mode It is interesting to consider how well the single modalities con-
sidered behave in order to assess the goodness of the fusion modalities. To this
end, we consider the single mode classification strategy, which means that just
a single modality is considered for the classification.

Late fusion Late fusion tries to merge the classification decisions obtained for
each modality in order to obtain a more robust decision that takes into account
both sources of information at the same time.
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Due to the SoftMax layer, the output of the CNN corresponds to values
between 0 and 1, indicating the confidence that the network gives to each possible
category. Therefore, decisions of independent networks can be merged by a linear
combination.

Let Ω denote the set of categories considered. Given images x and y from
the offline and online modality, respectively, this fusion emits the label ω̂ such
that

ω̂ = argmax
ω∈Ω

αPoff(ω|x) + (1− α)Pon(ω|y)

Where Poff(ω|x) and Pon(ω|y) are the probabilities given by the network used
for the corresponding modality. Note that α is a parameter that tunes the weight
given to each single modality. This parameter has to be fixed empirically.

Intermediate fusion Taking into account the internal operation of the CNN,
an intermediate fusion can be considered. That is, the combination is performed
in the intermediate layers of the network.

In this case, the intermediate union is achieved by the concatenation of the
CNN used for each modality. Afterwards, a new fully connected layer with Soft-
Max activation is added to output a new probability value for each category. A
graphical illustration is given in Fig. 4,

C
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CNN

CNN

Fig. 4: Structure of the whole multimodal-model classification scheme.

4 Experimentation

Experimentation followed a 5-fold cross-validation scheme. The independent
folds were randomly created with the sole constraint of having the same number
of samples per class (when possible) in each of them.

Table 2 shows the error rate achieved by each combination of network model
and classification scheme. Several α ∈ [0, 1] were tested for the late fusion strat-
egy, and the best results were obtained for α = 0.5.

Our experiments report that the information fusion (both late and intermedi-
ate) behave better than using single modalities, satisfying our initial hypothesis.
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Model 1 Model 2 Modal 3 Modal 4
Single mode (offline) 6.3 ± 0.7 6.1 ± 0.7 7.6 ± 0.2 6.6 ± 1.0
Single mode (online) 7.3 ± 0.2 7.3 ± 0.3 10 ± 2.1 7.7 ± 0.8
Late fusion (α = 0.5) 3.6 ± 0.5 3.2 ± 0.2 4.3 ± 0.8 4.4 ± 0.4
Intermediate fusion 3.5 ± 0.7 3.5 ± 0.6 4.2 ± 0.8 3.6 ± 0.6

Table 2: Error rate (average ± std. deviation) obtained for a 5-fold cross valida-
tion experiments with respect to the classification scheme and CNN model.

The best results, on average, are reported by the late fusion with the network
model 2. However, the difference with other models does not seem to be really
significant.

5 Conclusion

This paper presents a new approach to transcribe sheet music into a computer
by using e-pen technologies. This scenario produces a multimodal signal with
which to improve the music symbol classification.

Results with this particular dataset was presented, considering CNN and
several multimodal classification schemes. Results support that it is worth to
consider both modalities in the classification process, as accuracy is noticeably
improved with a combination of them than that achieved by each single modality.

This is a first step to achieve a complete system for music document tran-
scription. More factors are still of interest, such as detecting the position of the
symbols in the staff. For this task, an initial approach is using other CNN with
images that have more top and bottom margins, so that it is able to discriminate
by position. Those margins should be enough to see the whole staff, and thus be
able to detect the vertical position in the same way a human could do.
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Abstract. In this paper, we present a data-driven approach for automatically gen-
erating South Indian style rhythmic patterns. The method uses a set of annotated 
Carnatic percussion performances to generate new rhythmic patterns. All ex-
cerpts were manually annotated with beats, downbeats, and stroke registers. To 
model the rhythmic structure and the generation process of the talas, we use dif-
ferent partition templates that form the durations of the talas. We employed a 
modified version of the mutual nearest neighbor grouping algorithm to segment 
the rhythm sequences into meaningful grouping patterns that takes into consider-
ation the proximity and the distance between each stroke inter-onset-interval 
(IOI) and their adjacent strokes. Finally, we use the K-means clustering approach 
to cluster the rhythmic groupings in terms of similarity.  

Keywords: Carnatic music, music generation, rhythmic patterns. 

1 Introduction 

There is an increasing interest in developing computational strategies for the analysis 
and understanding of non-western music. Work by [1], [2], [3] and [4] in non-western 
music constitute some of the earlier examples in this area. Our work tries to develop 
generative models of Carnatic music percussion using a data-driven approach that de-
parts from earlier work such as the one just mentioned. The goal of this paper is to 
develop expert systems that can reliably generate music in this style of Indian Classical 
music, envisioning a contribution on two levels: 1) the creation of tools for lay audi-
ences to interact with musical styles beyond the Western ones; and 2) the automatic 
generation of unlimited amounts of data for training machine learning algorithms. By 
building applications that can recreate these musical styles we hope to create innovative 
tools for interaction with musical heritage that go beyond passively listening to the mu-
sic. Generative music systems, video games, and virtual worlds are increasingly re-
garded as powerful tools for music education and performance [5]. We intend to con-
tinue developing musical applications that will allow their users to produce non-western 
rhythms through interaction with generative music algorithms. Using these generative 
systems to train machine learning algorithms would constitute a major contribution to-
wards the creation of more robust computational systems for the analysis of the region’s 
musical styles.  
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1.1 Rhythmic structure in Carnatic Music 

The rhythmic framework of Carnatic music is based on the tala, which provides a struc-
ture for repetition, grouping and improvisation. The tala consists of a fixed time length 
cycle called avartana, which is also called the tala cycle. The avartana is divided into 
equidistant basic time units called aksaras, and the first aksara of each avartana is called 
the sama [6]. Two primary percussion accompaniments in Carnatic music are the Mri-
dangam and Kanjira. All training excerpts used in the proposed generation method were 
performed on the Mridangam and Kanjira drum in the context of separate solo improv-
isations.  

2 Approach 

The approach we adopt in this study is to model the aditala cycle as a series of strokes 
forming a partition. Each partition is formed using different durations of groupings and 
sequences of strokes. In our study we used 6 templates of partitions of groups of pulses 
(fig.1), all adding to 32 pulses. The templates of partitions have been validated in terms 
of the grammar and theory of this music idiom by direct discussion with Carnatic music 
expert musicians. Given an audio recording, first we obtain an automatic transcription 
of a sequence of time-aligned events of all stroke types, their durations (IOIs) and ve-
locities. All the recordings are merged into a text corpus of sequences of strokes. We 
used a grouping algorithm based on the mutual nearest neighbor that takes into consid-
eration the proximity and the distance between each stroke IOI and their adjacent 
strokes to group them in meaningful rhythmic patterns. Next, all the patterns are in-
dexed in terms of their duration and those patterns with durations between 2-8 secs are 
kept and used to form the partition variations of the tala. We transform all textual rep-
resentation of the groupings into vector feature representations by using the bags of 
words approach and all grouping patterns are clustered based on similarity using the K-
means algorithm. 
 

 

         Fig. 1. Partition templates of aditala cycles. 
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2.1 Dataset 

The training corpus consisted of 23 percussion solo compositions and groove pat-
terns in aditala (8 beat-cycle) in three different tempo levels: slow (70bpm), moderate 
(85bpm) and fast (105bpm). The duration of each composition is around 2.5 minutes. 
The compositions were performed by professional Carnatic percussionist Akshay 
Anantapadmanabhan with the Mridangam and Kanjira drum. All excerpts were rec-
orded using a metronome and were manually annotated including the sama and the 
other beats comprising the tala. 

 
2.2 Encoding the strokes 

In the Mridangam dataset each stroke event was encoded as a string based on five reg-
isters (Lo/Mid1-2-3/Hi), the hand (left (L) or right (R)) used for initiating the stroke, 
the inter-onset interval (IOI) between strokes and a value (V) indicating the velocity of 
the stroke. In the Kanjira drum data we used three register values (Lo/Mid/Hi), the inter-
onset interval (IOI) between strokes and the velocity (V) of the stroke. For the Mri-
dangam strokes, we also coded composite strokes played simultaneously with left and 
right hands. Although the Mridangam and Kanjira have a richer variety of registers and 
strokes, the reduction to three registers for the Kanjira and five for the Mridangam was 
a step to compromise the different stroke definition. This reduction was validated by 
Anantapadmanabhan as a process to accurately encode the different strokes in both 
percussion instruments. The normalized velocity values of the strokes were obtained 
by computing an onset detection function by combining energy and phase information 
in the complex frequency domain, and estimating its amplitude level with a value be-
tween 0.2 and 1 according to the strength of the stroke. For example, LoLV2T4, indi-
cates a stroke in the Low register (Lo) using the left hand (L) on the mridangam with 
velocity 0.5 (V2)  and duration of a dotted quarter note (T4). 

3 Grouping of strokes 

The encoded strokes are parsed using a grouping algorithm that groups them into mean-
ingful rhythmic patterns according to the 6 partition templates shown in figure 2. We 
used a modified version of the mutual nearest neighbor algorithm [7]. It works based 
on the proximity of the strokes by measuring the distance between adjacent strokes. 
Strokes are grouped together if they are nearest neighbors to each other. 
   A constraint of the algorithm is that every grouping has a minimum number of 2 
strokes. We adopted this constraint to avoid very small groupings of individual strokes. 
The algorithm stops parsing and form new groupings using a threshold that represents 
the largest duration that a grouping pattern can take. Figure 2 illustrates an example of 
grouping. The algorithm starts grouping the first two strokes in the rhythmic sequence 
based on the initial constraint and then compares the distances D1 and D2 between the 
last stroke in the grouping (blue dot) with the the next two strokes (green and red dots). 
D2 is less than D1 so the algorithm finds a boundary, saves the current grouping, and 
creates a new one. The algorithm is iterative and works hierarchically, e.g. when it 
finishes parsing the strokes and comparing the distances we get two layers of groupings 
four groupings for the first and two groupings for the second layer. 
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Fig. 2. Grouping of strokes based on the mutual nearest algorithm where brackets indicate 
groupings of strokes 

4 Clustering analysis 

4.1 Feature representation 

All the groupings of strokes were represented initially as symbolic notation, i.e. a string 
of text. To transform the textual symbolic information into meaningful feature vectors 
we used the bag of words approach and extracted all bigrams of the groupings. We 
generated feature vectors of the groupings by counting the times each bigram two stroke 
events occur in a grouping. This leaded to a feature matrix, which could be further used 
for clustering analysis. Finally, the K-means clustering approach was used to cluster 
the groupings of strokes in terms of similarity. 

4.2 Visualizing data using t-SNE 

The next step was to convert the high-dimensional data set representing the center of 
the clusters from the clustering analysis into a matrix of pairwise similarities to enable 
the visualization of the resulting data. Traditional dimensionality reduction techniques 
such as Principal Components Analysis are linear techniques that focus on keeping the 
low-dimensional representations of dissimilar data points far apart.  

   In our analysis, we used the so called t-distributed stochastic neighbor embedding 
(t-SNE), for visualizing the resulting similarity data [8]. Compared to methods dis-
cussed previously, t-SNE is capable of capturing much of the local structure of the high-
dimensional data, while also revealing global structure such as the presence of clusters 
at several scales. Figure 3 illustrates the result of the t-SNE transformation on the clus-
ters of the groupings. A 2-dimensional axis compromising two components were used 
for the t-SNE analysis and the pairwise distances between the cluster centers of the 
groupings are plotted in the axis. 

5 Generation process 

To synthesize and generate the talas, we modelled the 8-beat aditala cycle into a series 
of partitions of 32 timepoints/cycle, assuming a beat subdivision in 4 parts, and used  
the partition templates shown in Figure 1. By analyzing and clustering the different 
groupings of strokes based on their duration and similarity we were able to have an 
index of different grouping durations for different clusters. In order to fill the duration  
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Fig. 3. 2D map of proximity distances between the pattern clusters of groupings  

 
of the tala using a template of partition we used similar groupings in a cluster of differ-
ent durations given by the partition templates. By clustering the patterns based on sim-
ilarity we could generate different variations of a specific partition template of a tala 
using different groupings of the same duration. 

5.1 Carnatic music generation application 

The results from the analysis were used to develop a generative model that creates 
rhythmic grooves based on the groupings of strokes. The model was implemented as a 
Max patch that used as inputs the partition templates, the clusters of the groupings, the 
durations of the groupings and the coordinates of the cluster centers after the t-SNE 
data visualization analysis. This tool not only synthesizes the results from the analyses 
but it can be also used as a computational application for creative and learning explo-
ration of these rhythms. This latter aspect is of particular interest as it provides the 
gateway to develop software applications for automatic rhythm generation in non-west-
ern music styles. Figure 4 depicts a screenshot of the Max patch. The user can interact 
with the clusters of groupings by travelling in the 2D space and generate talas of pref-
erence based on a set of template partitions in various tempo of choice. He can also 
filter smaller rhythmic values, or create variations by having the program probabilisti-
cally choose between different stroke collections of the same duration in the cluster.   

6 Discussion and Future work 

This work presents a method for automatically generating new Carnatic style rhythmic 
patterns based on a set of training examples. The approach we adopt in this study is to 
model the aditala cycle using a series of partition templates. Each partition is formed 
using different durations of groupings and sequences of strokes. To improve the current 
methodology of rhythmic grouping we aim to adopt a new approach based on a diction-
ary method of pre-recorded Carnatic phrases. 
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Fig. 4. Max patch of Carnatic music generation application 

 
This method will use a dataset of well-formed Carnatic grouping dictionary of phrases 
performed with different variations and durations. These phrases will be later used as 
groupings to form the duration of the partition templates and generate the talas. Future 
work will also test the method on a larger dataset of recordings and evaluate the effec-
tiveness of the method by conducting a perceptual study using a group of professional 
Carnatic musicians in Chennai.  
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Abstract. Violin performance is characterized by an intimate connection be-

tween the player and her instrument that allows her a continuous control of sound 

through a sophisticated bowing technique. A great importance in violin pedagogy 

is, then, given to techniques of the right hand, responsible of most of the sound 

produced. This study analyses the bowing trajectory in three different classical 

violin exercises from audio and motion capture recordings to classify, using ma-

chine learning techniques, the different kinds of bowing techniques used. Our 

results show that a clustering algorithm is able to appropriately group together 

the different shapes produced by the bow trajectories.   

Keywords: Movement Analysis, Music Performance, Music Learning, Ma-

chine Learning, K-Means, Multimodal Interactive Systems  

1 Introduction 

1.1 Background 

One of the central elements in violin pedagogy is the bowing technique. Methods in-

troducing violin pedagogy commonly begin illustrating how to hold properly violin and 

bow, as well as the proper posture to support body movements without impeding bow 

arm (Galamian, 1962). A great importance in the violin pedagogy is given to techniques 

of the right hand that is responsible of most of the sound produced. 

Several studies investigated the movement of the bow, finding a strict relationship 

between motion characteristics and quality of the performance, e.g., the bowing motion 

should be fluid (Galamian, 1962) and circular (Starker, 1979). 

One of the first and most influential technical approaches to the study of bow move-

ment is Hodgson’s Motion Study and Violin Bowing, published in 1934. In his famous 

work, Hodgson used early methods of photographic motion tracking to study the circu-

lar nature of bowing technique in cyclographs (see Figure 1). 

The controversial insights of Hodgson’s work, showing that the bow’s trajectory is 

always curved, has caused an animated pedagogical debate, but the knowledge of the 

curved nature of bowing has influenced the pedagogy of the last century, giving to vi-

olinists an explanation and a metaphor to understand the correctness of their move-

ments, since it is generally not common for students or teachers to see their own playing 

movements represented in a visual way. 
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The body of scientific research related to mu-

sic education has grown significantly in recent 

decades, e.g., see (Rauscher, Shaw, & al, 1997), 

as well as the trend in developing sensors-based 

systems to use bow gestures in interactive perfor-

mance (Machover, 1992), (Nichols, 2002), 

(Overholt, 2005). Despite this growth, since 

Hodgson’s work, technology has been rarely ap-

plied to music pedagogy and usually restricted to 

other domains, such as to audio and video record-

ing and playing. 

This study is carried out in the framework of 

the EU-H2020-ICT Project TELMI, having the 

purpose of enhancing music learning through the 

development of multimodal systems for real-time         

and off-line feedback to students. 

The aim of the present preliminary work is to 

explore whether multimodal systems and machine learning techniques can be used for 

analyzing bow trajectories as a means of contributing to music performance pedagogy, 

by working on selected recordings of renowned performers and teachers recruited by 

the Royal College of Music in London. 

1.2 Bowing techniques 

Bow control is a central musician’s skill, giving the violinist the ability to direct bow’s 

motion during playing. 

In his work, Hodgson divided bowing movements in three categories of motion: 

• Movements across the string, influenced by tilt, speed and contact point tech-

niques; 

• Rotation movement around the string, that allows changing across strings and 

changing in direction; 

• Movement towards and away from string, variating the weight and that is respon-

sible of particular articulation effects. 

For this work, we chose to focus our attention on articulation techniques, as one of 

the most delicate parts of violin education and as one of the elements that a multimodal 

system can help to analyze. 

From the entire TELMI archive (see Section 1.3) we selected the Martelé (from 

Kreutzer, Op.7), Spiccato, and Sautillé (from Ševčík, Op.3) exercises recorded by four 

internationally renowned and esteemed professional violinists involved in the TELMI 

project. The choice of these exercises was made by considering the importance of these 

three different bowing techniques and the differences between them that are often con-

fused and difficulty master by students.  

One of the difficulties of these studies is related to speed, because there is a common 

ground where one should be able to make the change from Spiccato to Sautillé and vice 

versa without changing any character of the sound profile. Furthermore, the mechanic 

Figure 1: Hodgson’s cyclographs 
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of these two bowings are completely different. In Spiccato every single note is played 

actively, whereas in Sautillé the jumping activity is left quite exclusively to the resili-

ency of the stick. A further difference lies in the hand’s motion: according to Hodgson, 

in fact, during Spiccato the bow designs an eight in the air and when Spiccato is quick-

ened to Sautillé, the movement of the hand changes to an ellipse, but the bow continues 

to draw an eight in the air. Martelé represents, finally, a third type of fundamental 

movement of bowing, since it is at the basis of essential bowing techniques, such as 

Staccato, where the pressure is released between each stroke, and the bow speed has to 

be quite fast, yet light. 

1.3 The TELMI archive of multimodal recordings 

One of the milestones of TELMI is to build a corpus of multimodal data for informing 

the development of a multimodal interactive system for technology-enhanced violin 

learning and teaching (Volpe, Kolykhalova, Volta, & al., 2017). 

The archive is organized in a structured collection of exercises that follow the learn-

ing path of classical violin students. 

It includes several sources of data, such as motion capture of the performer, of the 

violin and of the bow, ambient and instrument audio, video, physiological data, (elec-

tromyography) and Kinect data. 

The corpus of material consists of 41 exercises, concerning handling the instrument, 

techniques of the right and left hands, articulation, and some expressive works (such as 

Elgar, Salut d’amour, Op. 12). 

All the recorded data were synchronized and played back using the EyesWeb XMI1 

platform (Camurri, Hashimoto, Ricchetti, & al., 2000), (Volpe, Alborno, & al., 2016).  

2 Recordings and segmentation 

We recorded 4 players performing the three selected exercises (Martelé, Spiccato and 

Sautillé) during the recording sessions for the TELMI archive. The violinists received 

the entire list of exercises in advance and the use of music sheets was allowed. 

A Qualysis motion capture system endowed with 13 video cameras was used to rec-

ord each performance. MoCap data was recorded at 100 Hz and synchronized with two 

video streams at 50 fps and with a pickup microphone stuck on the violin. The bow was 

endowed with 4 lightweight reflective markers. 2 more markers defined as virtual mark-

ers, together with 6 rigid bodies were included to enhance tracking robustness and reli-

ability. On the violin, we attached 6 further markers.  

After the recordings, data was segmented, by considering the musical structure, to 

isolate single bowing movements for each music phrase. We extracted 869 segments in 

total from 12 recordings we considered.  

Using EyesWeb we computed the 3D-trajectories of the tip of the bow, to check the 

presence of Hodgson’s bowing shapes. 

                                                           
1 www.casapaganini.org/eyesweb 
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We then computed six different features on each obtained segment, in particular: 

• Acceleration 

• Trajectory length 

• Kinetic energy: an approximation of the overall energy spent while per-

forming a movement with the bow. It is computed as the total amount of 

displacement in all of the tracked points. 

• Curvature: The derivative of the position vector over the curve of the tra-

jectory provides a tangent vector to the curve. The curvature is the deriva-

tive of such a vector, and describes how the tangent vector changes. As an 

example, a trajectory following the contour of a geometric shape, such as a 

square, will bend sharply in some points, so its curvature will have high 

values. 

• Directness: this is a measure of the extent to which a given trajectory is 

direct or flexible. It is computed as the ratio between the Euclidean distance 

calculated between the starting and the ending point of the considered tra-

jectory, and its length. 

• Smoothness: this corresponds to the third derivative of the position and it 

has often been used as a descriptor to evaluate how a motion trajectory var-

ies “slowly” over time (Flash and Hogan, 1985). 

3 Clustering 

To obtain the same number of features for each segment, we extracted a cumulative 

histogram with 25 bins for each considered feature, resulting into a 150-dimension fea-

ture vector data. 

K-means was applied to all the feature vectors, to figure out whether the different 

kinds of articulation exercises we were studying can be distinguished from the charac-

teristics of the bow motion. 

We then estimated the best number of clusters (i.e., the k parameter to seed the k-

means algorithm), that is shown in the Elbow curve in Figure 2. 

A value of k=3 was detected as the most appro-

priate value. Finally, we applied a PCA reduction 

to lower the dimension to the most representative 

2 and 3 features, and visualized the clusters.  

Resulting data clusters are shown in Figure 3 with 

different colors. As the figure shows, the consid-

ered segments were split mainly in three clusters.  

We verified a clear separation between three par-

ticular bow motion trajectories, i.e., segments be-

longing to the same cluster present similar trajec-

tories. 

 

Figure 2: The Elbow curve. The red circle 

identifies the number of clusters (k =3) we 

choose for this study. 
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We observed that most of the segments composing the purple cluster have been ex-

tracted from Sautillé performances, and segments belonging to the yellow cluster are 

mostly related to the Spiccato pieces. The most spread cluster, the light green one, is 

mostly composed by segments belonging to Martelé recordings. 

Our hypothesis, that needs to be investigated in the future with an extension of the 

presented work, is that the set of features we computed on the trajectories can effec-

tively be used to distinguish different bowing exercises and articulation techniques.  

 

                     
Figure 4: 3D visualization of the trajectories “drawn” by the bow while performing three 

different exercises. From left to right:  a) Martelè: characterized by a circular trajectory, b) 

Sautillè: characterized by an “8”- trajectory, c) Spiccato: characterized by a lace trajectory. 

4 Conclusions 

In this paper, we presented some preliminary results of our analysis of the TELMI mul-

timodal corpus of data. Results need to be confirmed by a deeper analysis of the clus-

tering we obtained. We aim at developing more sophisticated techniques to realize an 

adaptive system, able to understand the type of bow movement and violin exercise 

starting from movement features.  

The use of machine learning techniques in a music educational project aims to fur-

ther develop algorithms able to automatically assess the quality and precision of the 

music performance to help students to enhance their musical skills. 

Figure 3: 3 Clusters obtained by applying K-Means on PCA reduced data 
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